This paper investigates the phase behaviors, morphology changes, and degree of dispersion of a multi-component cathode battery slurry system. The slurry comprises polyvinylidene fluoride (PVDF) as the binder, hydrogenated nitrile butadiene rubber (HNBR) as the dispersant with varying acrylonitrile (ACN) content, N-methyl-2-pyrrolidone (NMP) as the solvent, and carbon nanotubes/graphene (CNTs/GRA) as the conductive agent. Several analytical methods, including visualized imaging, solubility parameters, radial distribution function (RDF) analysis, β phase PVDF analysis, near-atom analysis, and potential of mean force (PMF) analysis, were employed to compare the slurry’s characteristics. The results indicate that an increase in ACN content in HNBR improves the miscibility between HNBR and PVDF, while HNBR with low ACN content results in a crystalline structure and phase separation of HNBR and PVDF. Conversely, increasing the ACN content in HNBR has a negative impact, making it a poorer dispersant itself. These findings provide essential insights into effectively regulating the phase behavior, miscibility, and dispersion ability of multi-component slurry systems, thereby enhancing the performance of lithium-ion batteries.

1.
J.
Eddy
,
A.
Pfeiffer
, and
J.
van de Staaij
,
Recharging Economies: The EV-Battery Manufacturing Outlook for Europe
(
McKinsey & Company
,
2019
).
2.
Y.
Chen
,
Y.
Kang
,
Y.
Zhao
,
L.
Wang
,
J.
Liu
,
Y.
Li
,
Z.
Liang
,
X.
He
, and
X.
Li
, et al, “
A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards
,”
J. Energy Chem.
59
,
83
99
(
2021
).
3.
M.
Armand
,
P.
Axmann
,
D.
Bresser
,
M.
Copley
,
K.
Edström
,
C.
Ekberg
,
D.
Guy-omard
,
B.
Lestriez
,
P.
Novák
,
M.
Petranikova
et al, “
Lithium-ion batteries–current state of the art and anticipated developments
,”
J. Power Sources
479
,
228708
(
2020
).
4.
S.
Baazouzi
,
N.
Feistel
,
J.
Wanner
,
I.
Landwehr
,
A.
Fill
, and
K. P.
Birke
, “
Design, properties, and manufacturing of cylindrical li-ion battery cells—A generic overview
,”
Batteries
9
,
309
(
2023
).
5.
T.
Waldmann
,
R.-G.
Scurtu
,
K.
Richter
, and
M.
Wohlfahrt-Mehrens
, “
18650 vs. 21700 Li-ion cells—A direct comparison of electrochemical, thermal, and geometrical properties
,”
J. Power Sources
472
,
228614
(
2020
).
6.
X.
Ren
,
Z.
Li
,
W.
Tian
,
Y.
Zheng
,
J.
Sun
,
L.
An
,
F.
Wang
,
L.
Wen
,
X.
Wang
,
L.
Wang
, and
G.
Liang
, “
Enhanced cycling performance of cylindrical lithium-ion battery with high areal capacity electrodes via non-uniform load
,”
Ionics
26
,
691
702
(
2020
).
7.
K.
O’Regan
,
F.
Brosa Planella
,
W. D.
Widanage
, and
E.
Kendrick
, “
Thermal-electrochemical parameters of a high energy lithium-ion cylindrical battery
,”
Electrochim. Acta
425
,
140700
(
2022
).
8.
J.
Kang
,
Y.
Jia
,
G.
Zhu
,
J. V.
Wang
,
B.
Huang
, and
Y.
Fan
, “
How electrode thicknesses influence performance of cylindrical lithium-ion batteries
,”
J. Energy Storage
46
,
103827
(
2022
).
9.
H.
Pegel
,
D.
Wycisk
, and
D. U.
Sauer
, “
Influence of cell dimensions and housing material on the energy density and fast-charging performance of tables cylindrical lithium-ion cells
,”
Energy Storage Mater.
60
,
102796
(
2023
).
10.
M.
Ank
,
A.
Sommer
,
K. A.
Gamra
,
J.
Schöberl
,
M.
Leeb
,
J.
Schachtl
,
N.
Streidel
,
S.
Stock
,
M.
Schreiber
, and
P.
Bilfinger
, “
Others lithium-ion cells in automotive applications: Tesla 4680 cylindrical cell teardown and characterization
,”
J. Electrochem. Soc.
170
,
120536
(
2023
).
11.
P.
Blazek
,
P.
Westenberger
,
S.
Erker
,
A.
Brinek
,
T.
Zikmund
,
D.
Rettenwander
,
N. P.
Wagner
,
J.
Keckes
,
J.
Kaiser
,
T.
Kazda
et al, “
Axially and radially inhomogeneous swelling in commercial 18650 Li-ion battery cells
,”
J. Energy Storage
52
,
104563
(
2022
).
12.
J.
Kumberg
,
M.
Müller
,
R.
Diehm
,
S.
Spiegel
,
C.
Wachsmann
,
W.
Bauer
,
P.
Scharfer
, and
W.
Schabel
, “
Drying of lithium-ion battery anodes for use in high-energy cells: Influence of electrode thickness on drying time, adhesion, and crack formation
,”
Energy Technol.
7
,
1900722
(
2019
).
13.
R.
Schäfer
,
E.
Delz
,
M.
Kasper
,
V.
Knoblauch
,
M.
Wohlfahrt-Mehrens
, and
T.
Waldmann
, “
Effects of electrode curvature in Li-ion cells
,”
J. Electrochem. Soc.
170
,
120519
(
2023
).
14.
X.
Xia
,
J.
Yang
,
Y.
Liu
,
J.
Zhang
,
J.
Shang
,
B.
Liu
,
S.
Li
, and
W.
Li
, “
Material choice and structure design of flexible battery electrode
,”
Adv. Sci.
10
,
2204875
(
2023
).
15.
G.
Qian
,
X.
Liao
,
Y.
Zhu
,
F.
Pan
,
X.
Chen
, and
Y.
Yang
, “
Designing flexible lithium-ion batteries by structural engineering
,”
ACS Energy Lett.
4
,
690
701
(
2019
).
16.
H.
Lee
,
J.-K.
Yoo
,
J.-H.
Park
,
J. H.
Kim
,
K.
Kang
, and
Y. S.
Jung
, “
A stretchable polymer–carbon nanotube composite electrode for flexible lithium-ion batteries: Porosity engineering by controlled phase separation
,”
Adv. Energy Mater.
2
,
976
982
(
2012
).
17.
R.
Rahimi
,
M.
Ochoa
,
A.
Tamayol
,
S.
Khalili
,
A.
Khademhosseini
, and
B.
Ziaie
, “
Highly stretchable potentiometric pH sensor fabricated via laser carbonization and machining of Carbon−Polyaniline composite
,”
ACS Appl. Mater. Interfaces
9
,
9015
9023
(
2017
).
18.
S.
Wen
,
C.
Luo
,
Q.
Wang
,
Z.
Wei
,
Y.
Zeng
,
Y.
Jiang
,
G.
Zhang
,
H.
Xu
,
J.
Wang
,
C.
Wang
et al, “
Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries
,”
Energy Storage Mater.
47
,
453
461
(
2022
).
19.
Y.
Zhang
,
W.
Lu
,
L.
Cong
,
J.
Liu
,
L.
Sun
,
A.
Mauger
,
C. M.
Julien
,
H.
Xie
, and
J.
Liu
, “
Cross-linking network based on Poly(ethylene oxide): Solid polymer electrolyte for room temperature lithium battery
,”
J. Power Sources
420
,
63
72
(
2019
).
20.
J.
He
,
C.
Das
,
F.
Yang
, and
J.
Maibach
, “
Crosslinked poly(acrylic acid) enhances adhesion and electrochemical performance of Si anodes in Li-ion batteries
,”
Electrochim. Acta
411
,
140038
(
2022
).
21.
S.
Jessl
,
D.
Beesley
,
S.
Engelke
,
C. J.
Valentine
,
J. C.
Stallard
,
N.
Fleck
,
S.
Ahmad
,
M. T.
Cole
, and
M.
De Volder
, “
Carbon nanotube conductive additives for improved electrical and mechanical properties of flexible battery electrodes
,”
Mater. Sci. Eng.: A
735
,
269
274
(
2018
).
22.
W.
Weng
,
Q.
Sun
,
Y.
Zhang
,
S.
He
,
Q.
Wu
,
J.
Deng
,
X.
Fang
,
G.
Guan
,
J.
Ren
, and
H.
Peng
, “
A gum-like lithium-ion battery based on a novel arched structure
,”
Adv. Mater.
27
,
1363
1369
(
2015
).
23.
Y.
Bao
,
G.
Hong
,
Y.
Chen
,
J.
Chen
,
H.
Chen
,
W.-L.
Song
, and
D.
Fang
, “
Customized kirigami electrodes for flexible and deformable lithium-ion batteries
,”
ACS Appl. Mater. Interfaces
12
,
780
788
(
2019
).
24.
F.
Napolskiy
,
M.
Avdeev
,
M.
Yerdauletov
,
O.
Ivankov
,
S.
Bocharova
,
S.
Ryzhenkova
,
B.
Kaparova
,
K.
Mironovich
,
D.
Burlyaev
, and
V.
Krivchenko
, “
On the use of carbon nanotubes in prototyping the high energy density Li-ion batteries
,”
Energy Technol.
8
,
2000146
(
2020
).
25.
Z.
Zhang
,
J.
Mo
,
P.
Yu
,
L.
Feng
,
Y.
Wang
,
Y.
Lu
, and
W.
Yang
, “
High-performance flexible sulfur cathodes with robust electrode skeletons built by a hierarchical self-assembling slurry
,”
Adv. Sci.
9
,
2201881
(
2022
).
26.
J.
Hoon Kim
,
J.
Ahn
,
H.-M.
Kim
,
J.
Young Cho
,
D.
Geun Lee
,
Y.
Oh
,
J.
Hwan Park
,
J.
Soo Kim
,
J.-K.
Yoo
, and
J.
Tark Han
, “
Highly efficient oxidation of single-walled carbon nanotubes in liquid crystalline phase and dispersion for applications in Li-ion batteries
,”
Chem. Eng. J.
458
,
141350
(
2023
).
27.
N.
Verdier
,
S.
El Khakani
,
D.
Lepage
,
A.
Prébé
,
D.
Aymé-Perrot
,
M.
Dollé
, and
D.
Rochefort
, “
Polyacrylonitrile-based rubber (HNBR) as a new potential elastomeric binder for lithium-ion battery electrodes
,”
J. Power Sources
440
,
227111
(
2019
).
28.
S. S.
Hwang
,
M.
Sohn
,
H.-I.
Park
,
J.-M.
Choi
,
C. G.
Cho
, and
H.
Kim
, “
Effect of the heat treatment on the dimensional stability of Si electrodes with PVDF binder
,”
Electrochim. Acta
211
,
356
363
(
2016
).
29.
J.
Ahn
,
B.
Park
,
J.
Kim
,
M.-K.
Um
,
J. W.
Yi
, and
J.-K.
Yoo
, “
Multifunctional additives for high-energy-density lithium-ion batteries: Improved conductive additive/binder networks and enhanced electrochemical properties
,”
ACS Appl. Mater. Interfaces
13
,
19970
19982
(
2021
).
30.
Y.
Wang
,
C.
Qian
,
F.
Huo
,
J.
Qin
, and
H.
He
, “
Molecular mechanism of anion size regulating the nanostructure and charging process at ionic liquid–electrode interfaces
,”
J. Mater. Chem. A
8
,
19908
19916
(
2020
).
31.
D. E.
Galvez-Aranda
,
V.
Ponce
, and
J. M.
Seminario
, “
Molecular dynamics simulations of the first charge of a Li-ion—Si-anode nanobattery
,”
J. Mol. Model.
23
,
120
(
2017
).
32.
H.-S.
Liu
,
K.-Y.
Chen
,
C.-E.
Fang
, and
C.-C.
Chiu
, “
Comparing the effects of polymer binders on Li+ transport near the liquid electrolyte/LiFePO4 interfaces: A molecular dynamics simulation study
,”
Electrochim. Acta
375
,
137915
(
2021
).
33.
B.
Zheng
,
H.
Dong
,
J.
Zhu
, and
Y.
Wang
, “
Molecular dynamics study of lithium intercalation into −OH functionalized carbon nanotube bundle
,”
Sci. Rep.
12
,
9847
(
2022
).
34.
A.
Park
,
J.-Y.
Jung
,
S.
Kim
,
W.
Kim
,
M. Y.
Seo
,
S.
Kim
,
Y.
Kim
, and
W. B.
Lee
, “
Crystallization behavior of polyvinylidene fluoride (PVDF) in NMP/DMF solvents: A molecular dynamics study
,”
RSC Adv.
13
,
12917
12924
(
2023
).
35.
V.
Ponce
,
D. E.
Galvez-Aranda
, and
J. M.
Seminario
, “
Analysis of a Li-ion nanobattery with graphite anode using molecular dynamics simulations
,”
J. Phys. Chem. C
121
,
12959
12971
(
2017
).
36.
X.
Yao
,
Y.
Xiao
,
Z.
Wang
,
Z.
Zhang
,
W.
Cai
,
Y.
Zeng
, and
L.
Chen
, “
Coarse-grained molecular dynamics simulations of microstructure evolution and debonding in water-based cathode electrode drying
,”
J. Mater. Process. Technol.
321
,
118154
(
2023
).
37.
T.
Lombardo
,
J.-B.
Hoock
,
E. N.
Primo
,
A. C.
Ngandjong
,
M.
Duquesnoy
, and
A. A.
Franco
, “
Accelerated optimization methods for force-field parametrization in battery electrode manufacturing modeling
,”
Batteries Supercaps
3
,
721
730
(
2020
).
38.
J.
Xu
,
A. C.
Ngandjong
,
C.
Liu
,
F. M.
Zanotto
,
O.
Arcelus
,
A.
Demortiere
, and
A. A.
Franco
, “
Lithium ion battery electrode manufacturing model accounting for 3D realistic shapes of active material particles
,”
J. Power Sources
554
,
232294
(
2023
).
39.
C.
St-Antoine
,
D.
Lepage
,
G.
Foran
,
A.
Prébé
,
D.
Aymé-Perrot
,
D.
Rochefort
, and
M.
Dollé
, “
Relationship between the intermolecular interactions of carbonyl (PC) with nitrile (HNBR) functional groups and the flash point of a gel polymer electrolyte
,”
J. Mater. Chem. A
11
,
10984
10992
(
2023
).
40.
L.
Caradant
,
D.
Lepage
,
P.
Nicolle
,
A.
Prebe
,
D.
Ayme-Perrot
, and
M.
Dolle
, “
Effect of Li+ affinity on ionic conductivities in melt-blended nitrile rubber/polyether
,”
ACS Appl. Polym. Mater.
2
,
4943
4951
(
2020
).
41.
G.
Femina
,
O.
Ruiz de Ballesteros
,
G.
Urciuoli
,
M.
van Duin
,
C.
Gögelein
,
A.
Emendato
, and
F.
Auriemma
, “
Molecular chain orientation and mechanical properties of hydrogenated nitrile-butadiene rubbers with different acrylonitrile content and crosslink density
,”
Polymer
295
,
126749
(
2024
).
42.
P.
Eastman
,
M. S.
Friedrichs
,
J. D.
Chodera
,
R. J.
Radmer
,
C. M.
Bruns
,
J. P.
Ku
,
K. A.
Beauchamp
,
T. J.
Lane
,
L.-P.
Wang
,
D.
Shukla
et al, “
OpenMM 4: A reusable, extensible, hardware independent library for high performance molecular simulation
,”
J. Chem. Theory Comput.
9
,
461
469
(
2013
).
43.
H. J.
Berendsen
,
D.
van der Spoel
, and
R.
van Drunen
, “
GROMACS: A message-passing parallel molecular dynamics implementation
,”
Comput. Phys. Commun.
91
,
43
56
(
1995
).
44.
B.
Hess
,
C.
Kutzner
,
D.
Van Der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
45.
S.
El Khakani
,
N.
Verdier
,
D.
Lepage
,
A.
Prébé
,
D.
Aymé-Perrot
,
D.
Rochefort
, and
M.
Dollé
, “
Melt-processed electrode for lithium ion battery
,”
J. Power Sources
454
,
227884
(
2020
).
46.
O.
Rynne
,
M.
Dubarry
,
C.
Molson
,
E.
Nicolas
,
D.
Lepage
,
A.
Prébé
,
D.
Aymé-Perrot
,
D.
Rochefort
, and
M.
Dollé
, “
Exploiting materials to their full potential, a Li-ion battery electrode formulation optimization study
,”
ACS Appl. Energy Mater.
3
,
2935
2948
(
2020
).
47.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
48.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
, “
PACKMOL: A package for building initial configurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
,
2157
2164
(
2009
).
49.
L. S.
Dodda
,
J. Z.
Vilseck
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
, “
1.14*CM1A-LBCC: Localized bond-charge corrected CM1A charges for condensed-phase simulations
,”
J. Phys. Chem. B
121
,
3864
3870
(
2017
).
50.
L. S.
Dodda
,
I.
Cabeza de Vaca
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
, “
LigParGen web server: An automatic OPLS-AA parameter generator for organic ligands
,”
Nucleic Acids Res.
45
,
W331
W336
(
2017
).
51.
W. L.
Jorgensen
and
J.
Tirado-Rives
, “
Potential energy functions for atomic-level simulations of water and organic and biomolecular systems
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
6665
6670
(
2005
).
52.
D. M.
York
,
T. A.
Darden
, and
L. G.
Pedersen
, “
The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods
,”
J. Chem. Phys.
99
,
8345
8348
(
1993
).
53.
C.
Huang
,
C.
Li
,
P. Y.
Choi
et al, “
Effect of cut-off distance used in molecular dynamics simulations on fluid properties
,”
Mol. Simul.
36
,
856
864
(
2010
).
54.
S. W.
Siu
,
K.
Pluhackova
, and
R. A.
Bockmann
, “
Optimization of the OPLS-AA force field for long hydrocarbons
,”
J. Chem. Theory Comput.
8
,
1459
1470
(
2012
).
55.
J. A.
Izaguirre
,
C. R.
Sweet
, and
V. S.
Pande
,
Biocomputing 2010
(
World Scientific
,
2010
), pp.
240
251
.
56.
J.
Åqvist
,
P.
Wennerström
,
M.
Nervall
,
S.
Bjelic
, and
B. O.
Brandsdal
, “
Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm
,”
Chem. Phys. Lett.
384
,
288
294
(
2004
).
57.
J. A.
Lemkul
and
D. R.
Bevan
, “
Assessing the stability of Alzheimer’s amyloid protofibrils using molecular dynamics
,”
J. Phys. Chem. B
114
,
1652
1660
(
2010
).
58.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
519
(
1984
).
59.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
60.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
61.
B.
Hess
,
H.
Bekker
,
H. J.
Berendsen
, and
J. G.
Fraaije
, “
LINCS: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
,
1463
1472
(
1997
).
62.
Y.
Huang
,
Y.
Liang
,
Y.
Masuda
,
W.
Cui
,
T.
Tsuji
,
T.
Matsuoka
,
E. S.
Boek
, and
K.
Takabayashi
, “
Evaluation of asphaltene Hildebrand and Hansen solubility parameters using digital oil models with molecular dynamics simulation
,”
Energy Fuels
37
,
14699
14713
(
2023
).
63.
H.
Yoon
,
H.
Kim
,
P.
Matteini
, and
B.
Hwang
, “
Research trends on the dispersibility of carbon nanotube suspension with surfactants in their application as electrodes of batteries: A mini-review
,”
Batteries
8
,
254
(
2022
).
64.
N. R.
Tummala
,
B. H.
Morrow
,
D. E.
Resasco
, and
A.
Striolo
, “
Stabilization of aqueous carbon nanotube dispersions using surfactants: Insights from molecular dynamics simulations
,”
ACS Nano
4
,
7193
7204
(
2010
).
65.
N. M.
Uddin
,
F. M.
Capaldi
, and
B.
Farouk
, “
Molecular dynamics simulations of the interactions and dispersion of carbon nanotubes in polyethylene oxide/water systems
,”
Polymer
52
,
288
296
(
2011
).
66.
M.
Silva
,
V.
Sencadas
,
G.
Botelho
,
A.
Machado
,
A.
Rolo
,
J. G.
Rocha
, and
S.
Lanceros-Méndez
, “
α-and γ-PVDF: Crystallization kinetics, microstructural variations and thermal behaviour
,”
Mater. Chem. Phys.
122
,
87
92
(
2010
).
67.
L.
Li
,
M.
Zhang
,
M.
Rong
, and
W.
Ruan
, “
Studies on the transformation process of PVDF from α to β phase by stretching
,”
RSC Adv.
4
,
3938
3943
(
2014
).
You do not currently have access to this content.