In molecular dynamics (MD) simulations of water, rigid non-polarizable models are still valuable and widely used because of their low computational cost and excellent performance. Most of such models have been for light water (H2O) for a long time, and a few have recently been reported for heavy water (D2O). The specific models of D2O are needed because of its notably slower dynamics and stronger hydrogen bond than H2O. To our knowledge, no models of semi-heavy water (HOD) were made, although HOD is the most abundant and, therefore, most important chemical species in isotopically diluted water (IDW) prepared by mixing equal amounts of H2O and D2O. For precise MD simulations of IDW, a specific model of HOD is definitely needed. Here, we report the development of a new rigid non-polarizable model of HOD, TIP4P/2005-SHW, on the basis of the most popular H2O model, TIP4P/2005, and its D2O counterpart, TIP4P/2005-HW. We show the details of the development and demonstrate the high reproducibility of TIP4P/2005-SHW in terms of the density, the temperature of maximum density, the viscosity, and the diffusion coefficient.

1.
A.
Otsuki
,
L.
De Campo
,
C. J.
Garvey
, and
C.
Rehm
,
Colloids Interfaces
2
,
37
(
2018
).
2.
J. C.
Duplan
,
L.
Mahi
, and
J. L.
Brunet
,
Chem. Phys. Lett.
413
,
400
403
(
2005
).
3.
I. V.
Stiopkin
,
C.
Weeraman
,
P. A.
Pieniazek
,
F. Y.
Shalhout
,
J. L.
Skinner
, and
A. V.
Benderskii
,
Nature
474
,
192
195
(
2011
).
4.
S.
Nihonyanagi
,
T.
Ishiyama
,
T.-k.
Lee
,
S.
Yamaguchi
,
M.
Bonn
,
A.
Morita
, and
T.
Tahara
,
J. Am. Chem. Soc.
133
,
16875
16880
(
2011
).
5.
Y.
Nojima
,
Y.
Shioya
,
H.
Torii
, and
S.
Yamaguchi
,
Chem. Commun.
56
,
4563
4566
(
2020
).
6.
C.-C.
Yu
,
K.-Y.
Chiang
,
M.
Okuno
,
T.
Seki
,
T.
Ohto
,
X.
Yu
,
V.
Korepanov
,
H.-o.
Hamaguchi
,
M.
Bonn
,
J.
Hunger
, and
Y.
Nagata
,
Nat. Commun.
11
,
5977
(
2020
).
7.
T.
Seki
,
C.-C.
Yu
,
X.
Yu
,
T.
Ohto
,
S.
Sun
,
K.
Meister
,
E. H. G.
Backus
,
M.
Bonn
, and
Y.
Nagata
,
Phys. Chem. Chem. Phys.
22
,
10934
10940
(
2020
).
8.
S.
Ishihara
,
T.
Takayama
,
M.
Sakaguchi
,
T.
Otosu
,
T.
Yagasaki
,
Y.
Suzuki
, and
S.
Yamaguchi
,
J. Raman Spectrosc.
53
,
1773
1784
(
2022
).
9.
T.
Takayama
,
K.
Kishi
,
T.
Otosu
,
T.
Yagasaki
, and
S.
Yamaguchi
,
J. Phys. Chem. C
126
,
17359
17365
(
2022
).
10.
S.
Yamaguchi
,
T.
Takayama
,
Y.
Goto
,
T.
Otosu
, and
T.
Yagasaki
,
J. Phys. Chem. Lett.
13
,
9649
9653
(
2022
).
11.
K.
Inoue
,
Y.
Litman
,
D. M.
Wilkins
,
Y.
Nagata
, and
M.
Okuno
,
J. Phys. Chem. Lett.
14
,
3063
3068
(
2023
).
12.
M.
Pastorczak
,
K.
Duk
,
S.
Shahab
, and
A. A.
Kananenka
,
J. Phys. Chem. B
127
,
4843
4857
(
2023
).
13.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
, and
J.
Hermans
,
Intermolecular Forces
(
Reidel
,
Dordrecht
,
1981
).
14.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
6271
(
1987
).
15.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
935
(
1983
).
16.
S.
Izadi
,
R.
Anandakrishnan
, and
A. V.
Onufriev
,
J. Phys. Chem. Lett.
5
,
3863
3871
(
2014
).
17.
M. W.
Mahoney
and
W. L.
Jorgensen
,
J. Chem. Phys.
112
,
8910
8922
(
2000
).
18.
H. W.
Horn
,
W. C.
Swope
,
J. W.
Pitera
,
J. D.
Madura
,
T. J.
Dick
,
G. L.
Hura
, and
T.
Head-Gordon
,
J. Chem. Phys.
120
,
9665
9678
(
2004
).
19.
C.
Vega
,
E.
Sanz
,
J. L. F.
Abascal
, and
C.
Vega
,
J. Chem. Phys.
122
,
234511
(
2005
).
20.
L.-P.
Wang
,
T. J.
Martinez
, and
V. S.
Pande
,
J. Phys. Chem. Lett.
5
,
1885
1891
(
2014
).
21.
S.
Piana
,
A. G.
Donchev
,
P.
Robustelli
, and
D. E.
Shaw
,
J. Phys. Chem. B
119
,
5113
5123
(
2015
).
22.
S.
Izadi
and
A. V.
Onufriev
,
J. Chem. Phys.
145
,
074501
(
2016
).
23.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
24.
H. L.
Pi
,
J. L.
Aragones
,
C.
Vega
,
E. G.
Noya
,
J. L. F.
Abascal
,
M. A.
Gonzalez
, and
C.
McBride
,
Mol. Phys.
107
,
365
374
(
2009
).
25.
M. A.
González
and
J. L. F.
Abascal
,
J. Chem. Phys.
132
,
096101
(
2010
).
26.
G.
Camisasca
,
H.
Pathak
,
K. T.
Wikfeldt
, and
L. G. M.
Pettersson
,
J. Chem. Phys.
151
,
044502
(
2019
).
27.
C.
Vega
and
E.
de Miguel
,
J. Chem. Phys.
126
,
154707
(
2007
).
28.
A.
Ghoufi
,
F.
Goujon
,
V.
Lachet
, and
P.
Malfreyt
,
J. Chem. Phys.
128
,
154716
(
2008
).
29.
R. D.
Mountain
,
J. Phys. Chem. B
113
,
482
486
(
2009
).
30.
G. A.
Chapela
and
J.
Alejandre
,
J. Chem. Phys.
132
,
014701
(
2010
).
31.
E. G.
Noya
,
C.
Menduiña
,
J. L.
Aragones
, and
C.
Vega
,
J. Phys. Chem. C
111
,
15877
15888
(
2007
).
32.
M. M.
Conde
,
M. A.
Gonzalez
,
J. L. F.
Abascal
, and
C.
Vega
,
J. Chem. Phys.
139
,
154505
(
2013
).
33.
C.
Vega
and
J. L. F.
Abascal
,
Phys. Chem. Chem. Phys.
13
,
19663
19688
(
2011
).
34.
L. F.
Sedano
,
S.
Blazquez
, and
C.
Vega
,
J. Chem. Phys.
161
,
044505
(
2024
).
35.
T.
Takayama
,
T.
Otosu
, and
S.
Yamaguchi
,
J. Chem. Phys.
158
,
136101
(
2023
).
36.
J. R.
Grigera
,
J. Chem. Phys.
114
,
8064
8067
(
2001
).
37.
V. C.
Chamorro
,
C.
Tempra
, and
P.
Jungwirth
,
J. Phys. Chem. B
125
,
4514
4519
(
2021
).
38.
V. R.
Belosludov
,
K. V.
Gets
,
R. K.
Zhdanov
,
Y. Y.
Bozhko
, and
O. S.
Subbotin
,
JETP Lett.
116
,
319
322
(
2022
).
39.
J.-B.
Linse
and
J. S.
Hub
,
J. Chem. Phys.
154
,
194501
(
2021
).
40.
T.
Takayama
,
T.
Otosu
, and
S.
Yamaguchi
,
J. Chem. Phys.
160
,
104504
(
2024
).
41.
CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data. 2003–2004
, edited by
D. R.
Lide
, 84th ed. (
CRC
,
Boca Raton, FL; London
,
2003
).
42.
A.
Crabtree
and
M.
Siman-Tov
, “
Thermophysical properties of saturated light and heavy water for advanced neutron source applications
,”
Technical Report No. ORNL/TM-12322
,
1993
.
43.
G. S.
Kell
and
E.
Whalley
,
Philos. Trans. R. Soc., A
258
,
565
614
(
1965
).
44.
F. J.
Millero
and
F. K.
Lepple
,
J. Chem. Phys.
54
,
946
949
(
1971
).
45.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
46.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J.
Berendsen
,
J. Comput. Chem.
26
,
1701
1718
(
2005
).
47.
M.
Wolfsberg
,
A. A.
Massa
, and
J. W.
Pyper
,
J. Chem. Phys.
53
,
3138
3146
(
1970
).
48.
J.
Meija
,
Z.
Mester
, and
A.
D’Ulivo
,
J. Am. Soc. Mass Spectrom.
17
,
1028
1036
(
2006
).
49.
R. W.
Hockney
,
S. P.
Goel
, and
J. W.
Eastwood
,
J. Comput. Phys.
14
,
148
158
(
1974
).
50.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
8593
(
1995
).
51.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
10092
(
1993
).
52.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
1697
(
1985
).
54.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
7190
(
1981
).
55.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
,
J. Comput. Chem.
18
,
1463
1472
(
1997
).
56.
G.-J.
Guo
and
Y.-G.
Zhang
,
Mol. Phys.
99
,
283
289
(
2001
).
57.
D.
Alfè
and
M. J.
Gillan
,
Phys. Rev. Lett.
81
,
5161
5164
(
1998
).
58.
T.
Ando
,
J. Chem. Phys.
159
,
101102
(
2023
).
59.
W.
Wagner
and
A.
Pruß
,
J. Phys. Chem. Ref. Data
31
,
387
535
(
2002
).
60.
E.
Swift
,
J. Am. Chem. Soc.
61
,
198
200
(
1939
).
61.
E.
Swift
,
J. Am. Chem. Soc.
61
,
1293
1294
(
1939
).
62.
B. J.
Zwolinski
and
L. D.
Eicher
,
J. Phys. Chem.
75
,
2016
2024
(
1971
).
63.
G.
Jones
and
H. J.
Fornwalt
,
J. Chem. Phys.
4
,
30
33
(
1936
).
64.
K.
Ito
,
C. T.
Moynihan
, and
C. A.
Angell
,
Nature
398
,
492
495
(
1999
).
65.
A.
Stefaniuk
,
S.
Gawinkowski
,
B.
Golec
,
A.
Gorski
,
K.
Szutkowski
,
J.
Waluk
, and
J.
Poznański
,
Sci. Rep.
12
,
18732
(
2022
).
66.
M. A.
González
and
J. L. F.
Abascal
,
J. Chem. Phys.
135
,
224516
(
2011
).
67.
T.
Yagasaki
and
S.
Saito
,
J. Chem. Phys.
134
,
184503
(
2011
).
68.
B. M.
Auer
and
J. L.
Skinner
,
J. Chem. Phys.
128
,
224511
(
2008
).
69.
A. A.
Kananenka
and
J. L.
Skinner
,
J. Chem. Phys.
148
,
244107
(
2018
).
You do not currently have access to this content.