In this study, we introduce two datasets for nanoscale noncovalent binding, featuring complexes at the hundred-atom scale, benchmarked using coupled cluster with single, double, and perturbative triple [CCSD(T)] excitations extrapolated to the complete basis set (CBS) limit. The first dataset, L14, comprises 14 complexes with canonical CCSD(T)/CBS benchmarks, extending the applicability of CCSD(T)/CBS binding benchmarks to systems as large as 113 atoms. The second dataset, vL11, consists of 11 even larger complexes, evaluated using the local CCSD(T)/CBS method with stringent thresholds, covering systems up to 174 atoms. We compare binding energies obtained from local CCSD(T) and fixed-node diffusion Monte Carlo (FN-DMC), which have previously shown discrepancies exceeding the chemical accuracy threshold of 1 kcal/mol in large complexes, with the new canonical CCSD(T)/CBS results. While local CCSD(T)/CBS agrees with canonical CCSD(T)/CBS within binding uncertainties, FN-DMC consistently underestimates binding energies in ππ complexes by over 1 kcal/mol. Potential sources of error in canonical CCSD(T)/CBS are discussed, and we argue that the observed discrepancies are unlikely to originate from CCSD(T) itself. Instead, the fixed-node approximation in FN-DMC warrants further investigation to elucidate these binding discrepancies. Using these datasets as reference, we evaluate the performance of various electronic structure methods, semi-empirical approaches, and machine learning potentials for nanoscale complexes. Based on computational accuracy and stability across system sizes, we recommend MP2+aiD(CCD), PBE0+D4, and ωB97X-3c as reliable methods for investigating noncovalent interactions in nanoscale complexes, maintaining their promising performance observed in smaller systems.

1.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
2.
J.
Řezáč
and
P.
Hobza
,
Chem. Rev.
116
,
5038
(
2016
).
3.
C. D.
Sherrill
, “
Chapter 4–Wavefunction theory approaches to noncovalent interactions
,” in
Non-Covalent Interactions in Quantum Chemistry and Physics
, edited by
A.
Otero de la Roza
and
G. A.
DiLabio
(
Elsevier
,
2017
), pp.
137
168
.
4.
M.
Kodrycka
and
K.
Patkowski
,
J. Chem. Phys.
151
,
070901
(
2019
).
5.
Y. S.
Al-Hamdani
and
A.
Tkatchenko
,
J. Chem. Phys.
150
,
010901
(
2019
).
6.
M.
Gray
and
J. M.
Herbert
,
Annu. Rep. Comput. Chem.
20
,
1
(
2024
).
7.
N.
Mardirossian
and
M.
Head-Gordon
,
Mol. Phys.
115
,
2315
(
2017
).
8.
P. D.
Mezei
and
O. A.
von Lilienfeld
,
J. Chem. Theory Comput.
16
,
2647
(
2020
).
10.
C.
Riplinger
,
P.
Pinski
,
U.
Becker
,
E. F.
Valeev
, and
F.
Neese
,
J. Chem. Phys.
144
,
024109
(
2016
).
11.
F.
Pavošević
et al,
J. Chem. Phys.
146
,
174108
(
2017
).
12.
P. R.
Nagy
,
G.
Samu
, and
M.
Kállay
,
J. Chem. Theory Comput.
14
,
4193
(
2018
).
13.
P. R.
Nagy
and
M.
Kállay
,
J. Chem. Theory Comput.
15
,
5275
(
2019
).
15.
A.
Lüchow
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
388
(
2011
).
16.
B. M.
Austin
,
D. Y.
Zubarev
, and
W. A. J.
Lester
,
Chem. Rev.
112
,
263
(
2012
).
17.
M.
Dubecký
,
L.
Mitas
, and
P.
Jurečka
,
Chem. Rev.
116
,
5188
(
2016
).
18.
Y. S.
Al-Hamdani
et al,
Nat. Commun.
12
,
3927
(
2021
).
19.
A.
Benali
,
H.
Shin
, and
O.
Heinonen
,
J. Chem. Phys.
153
,
194113
(
2020
).
20.
F.
Ballesteros
,
S.
Dunivan
, and
K. U.
Lao
,
J. Chem. Phys.
154
,
154104
(
2021
).
21.
C.
Villot
,
F.
Ballesteros
,
D.
Wang
, and
K. U.
Lao
,
J. Phys. Chem. A
126
,
4326
(
2022
).
22.
H.
Kruse
,
P.
Banáš
, and
J.
Šponer
,
J. Chem. Theory Comput.
15
,
95
(
2019
).
23.
L.
Gyevi-Nagy
,
M.
Kállay
, and
P. R.
Nagy
,
J. Chem. Theory Comput.
17
,
860
(
2021
).
24.
J. P.
Heindel
,
K. M.
Herman
,
E.
Aprà
, and
S. S.
Xantheas
,
J. Phys. Chem. Lett.
12
,
7574
(
2021
).
25.
D.
Datta
and
M. S.
Gordon
,
J. Chem. Theory Comput.
19
,
7640
(
2023
).
26.
J.
Czernek
and
J.
Brus
,
Int. J. Mol. Sci.
25
,
602
(
2024
).
27.
S.
Tsuzuki
,
K.
Honda
,
T.
Uchimaru
,
M.
Mikami
, and
K.
Tanabe
,
J. Am. Chem. Soc.
124
,
104
(
2002
).
28.
M. O.
Sinnokrot
,
E. F.
Valeev
, and
C. D.
Sherrill
,
J. Am. Chem. Soc.
124
,
10887
(
2002
).
29.
P.
Hobza
and
J.
Šponer
,
J. Am. Chem. Soc.
124
,
11802
(
2002
).
30.
P.
Jurečka
and
P.
Hobza
,
Chem. Phys. Lett.
365
,
89
(
2002
).
31.
M. S.
Marshall
,
L. A.
Burns
, and
C. D.
Sherrill
,
J. Chem. Phys.
135
,
194102
(
2011
).
32.
J.
Calbo
,
E.
Ortí
,
J. C.
Sancho-García
, and
J.
Aragó
,
J. Chem. Theory Comput.
11
,
932
(
2015
).
33.
R.
Sedlak
et al,
J. Chem. Theory Comput.
9
,
3364
(
2013
).
34.
J.-L.
Chen
,
T.
Sun
,
Y.-B.
Wang
, and
W.
Wang
,
J. Comput. Chem.
41
,
1252
(
2020
).
35.
J.
Czernek
,
J.
Brus
, and
V.
Czerneková
,
Int. J. Mol. Sci.
23
,
15773
(
2022
).
36.
K.
Carter-Fenk
,
K. U.
Lao
,
K.-Y.
Liu
, and
J. M.
Herbert
,
J. Phys. Chem. Lett.
10
,
2706
(
2019
).
38.
Y.
Guo
et al,
J. Chem. Phys.
148
,
011101
(
2018
).
39.
J.
Gorges
,
S.
Grimme
, and
A.
Hansen
,
Phys. Chem. Chem. Phys.
24
,
28831
(
2022
).
40.
Z.
Ni
,
Y.
Guo
,
F.
Neese
,
W.
Li
, and
S.
Li
,
J. Chem. Theory Comput.
17
,
756
(
2021
).
41.
E.
Brémond
,
H.
Li
,
J. C.
Sancho-García
, and
C.
Adamo
,
J. Phys. Chem. A
126
,
2590
(
2022
).
42.
D. G.
Liakos
,
M.
Sparta
,
M. K.
Kesharwani
,
J. M. L.
Martin
, and
F.
Neese
,
J. Chem. Theory Comput.
11
,
1525
(
2015
).
43.
T.
Takatani
,
E. G.
Hohenstein
,
M.
Malagoli
,
M. S.
Marshall
, and
C. D.
Sherrill
,
J. Chem. Phys.
132
,
144104
(
2010
).
44.
J.
Řezác
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
2427
(
2011
);
Erratum
10
,
1359
(
2014
).
45.
O.
Marchetti
and
H.-J.
Werner
,
Phys. Chem. Chem. Phys.
10
,
3400
(
2008
).
46.
A.
Halkier
et al,
Chem. Phys. Lett.
286
,
243
(
1998
).
47.
J.
Antony
,
R.
Sure
, and
S.
Grimme
,
Chem. Commun.
51
,
1764
(
2015
).
48.
H.
Wang
,
H.
Xu
,
W.
Jia
,
J.
Liu
, and
S.
Ren
,
Energy Fuels
31
,
2488
(
2017
).
49.
50.
M.
Gray
and
J. M.
Herbert
,
J. Chem. Phys.
161
,
054114
(
2024
).
51.
A.
Altun
,
F.
Neese
, and
G.
Bistoni
,
J. Chem. Theory Comput.
16
,
6142
(
2020
).
52.
A.
Altun
,
S.
Ghosh
,
C.
Riplinger
,
F.
Neese
, and
G.
Bistoni
,
J. Phys. Chem. A
125
,
9932
(
2021
).
53.
E.
Semidalas
and
J. M. L.
Martin
,
J. Chem. Theory Comput.
18
,
883
(
2022
).
54.
A.
Altun
,
C.
Riplinger
,
F.
Neese
, and
G.
Bistoni
,
J. Chem. Theory Comput.
19
,
2039
(
2023
).
55.
D. A.
Wappett
and
L.
Goerigk
,
J. Phys. Chem. A
128
,
62
(
2024
).
56.
M.
Drosou
,
C. A.
Mitsopoulou
, and
D. A.
Pantazis
,
J. Chem. Theory Comput.
18
,
3538
(
2022
).
57.
S.
Spicher
,
E.
Caldeweyher
,
A.
Hansen
, and
S.
Grimme
,
Phys. Chem. Chem. Phys.
23
,
11635
(
2021
).
58.
S.
Ehlert
,
S.
Grimme
, and
A.
Hansen
,
J. Phys. Chem. A
126
,
3521
(
2022
).
59.
G.
Santra
,
E.
Semidalas
,
N.
Mehta
,
A.
Karton
, and
J. M. L.
Martin
,
Phys. Chem. Chem. Phys.
24
,
25555
(
2022
).
60.
M.
Blaško
,
L. F.
Pašteka
, and
M.
Urban
,
J. Phys. Chem. A
125
,
7382
(
2021
).
61.
A.
Benali
,
L.
Shulenburger
,
N. A.
Romero
,
J.
Kim
, and
O. A.
von Lilienfeld
,
J. Chem. Theory Comput.
10
,
3417
(
2014
).
62.
D. I.
Sharapa
,
J. T.
Margraf
,
A.
Hesselmann
, and
T.
Clark
,
J. Chem. Theory Comput.
13
,
274
(
2017
).
63.
S.
Grimme
,
J. Chem. Phys.
118
,
9095
(
2003
).
64.
R. A.
DiStasio
, Jr.
and
M.
Head-Gordon
,
Mol. Phys.
105
,
1073
(
2007
).
65.
J.
Řezáč
,
C.
Greenwell
, and
G. J. O.
Beran
,
J. Chem. Theory Comput.
14
,
4711
(
2018
).
66.
C.
Greenwell
,
J.
Řezáč
, and
G. J. O.
Beran
,
Phys. Chem. Chem. Phys.
24
,
3695
(
2022
).
67.
R. T.
McGibbon
et al,
J. Chem. Phys.
147
,
161725
(
2017
).
68.
C.
Villot
and
K. U.
Lao
,
J. Chem. Phys.
160
,
184103
(
2024
).
69.
K. U.
Lao
and
C.
Villot
,
J. Chem. Phys.
160
,
184108
(
2024
).
70.
See https://github.com/kaunlaolab/dispml for the ab initio dispersion potentials with Δ ML corrections.
71.
T. M.
Parker
,
L. A.
Burns
,
R. M.
Parrish
,
A. G.
Ryno
, and
C. D.
Sherrill
,
J. Chem. Phys.
140
,
094106
(
2014
).
72.
N.
Mardirossian
and
M.
Head-Gordon
,
J. Chem. Phys.
144
,
214110
(
2016
).
73.
N.
Mardirossian
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
16
,
9904
(
2014
).
74.
N.
Mardirossian
and
M.
Head-Gordon
,
J. Chem. Phys.
142
,
074111
(
2015
).
75.
N.
Mardirossian
et al,
J. Phys. Chem. Lett.
8
,
35
(
2017
).
76.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
77.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
78.
E.
Caldeweyher
et al,
J. Chem. Phys.
150
,
154122
(
2019
).
79.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
80.
A.
Ambrosetti
,
A. M.
Reilly
,
R. A.
DiStasio
, Jr.
,
A.
Tkatchenko
, and
A.
Tkatchenko
,
J. Chem. Phys.
140
,
18A508
(
2014
).
81.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
82.
J.-D.
Chai
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
10
,
6615
(
2008
).
83.
H. S.
Yu
,
X.
He
,
S. L.
Li
, and
D. G.
Truhlar
,
Chem. Sci.
7
,
5032
(
2016
).
84.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
85.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Phys.
125
,
194101
(
2006
).
86.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
87.
R.
Sure
and
S.
Grimme
,
J. Comput. Chem.
34
,
1672
(
2013
).
88.
S.
Grimme
,
J. G.
Brandenburg
,
C.
Bannwarth
, and
A.
Hansen
,
J. Chem. Phys.
143
,
054107
(
2015
).
89.
J. G.
Brandenburg
,
C.
Bannwarth
,
A.
Hansen
, and
S.
Grimme
,
J. Chem. Phys.
148
,
064104
(
2018
).
90.
S.
Grimme
,
A.
Hansen
,
S.
Ehlert
, and
J.-M.
Mewes
,
J. Chem. Phys.
154
,
064103
(
2021
).
91.
M.
Müller
,
A.
Hansen
, and
S.
Grimme
,
J. Chem. Phys.
158
,
014103
(
2023
).
92.
F.
Neese
,
F.
Wennmohs
,
U.
Becker
, and
C.
Riplinger
,
J. Chem. Phys.
152
,
224108
(
2020
).
93.
J.
Řezác
and
P.
Hobza
,
J. Chem. Theory Comput.
8
,
141
(
2012
).
94.
J.
Řezáč
,
J. Chem. Theory Comput.
13
,
4804
(
2017
).
95.
C.
Bannwarth
,
S.
Ehlert
, and
S.
Grimme
,
J. Chem. Theory Comput.
15
,
1652
(
2019
).
96.
T.
Bereau
,
R. A.
DiStasio
, Jr.
,
A.
Tkatchenko
, and
O. A.
von Lilienfeld
,
J. Chem. Phys.
148
,
241706
(
2018
).
97.
J. B.
Schriber
et al,
J. Chem. Phys.
154
,
184110
(
2021
).
98.
K.
Szalewicz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
254
(
2012
).
99.
K.
Patkowski
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
10
,
e1452
(
2020
).
100.
L.
Grafova
,
M.
Pitonak
,
J.
Řezác
, and
P.
Hobza
,
J. Chem. Theory Comput.
6
,
2365
(
2010
).
101.
D. G. A.
Smith
et al,
J. Chem. Phys.
152
,
184108
(
2020
).
102.
E.
Epifanovsky
et al,
J. Chem. Phys.
155
,
084801
(
2021
).
103.
J.
Řezáč
,
J. Comput. Chem.
37
,
1230
(
2016
).
104.
J. J. P.
Stewart
,
J. Mol. Model.
19
,
1
(
2013
).
105.
B.
Hourahine
et al,
J. Chem. Phys.
152
,
124101
(
2020
).
106.
C.
Bannwarth
et al,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1493
(
2021
).
107.
N.
Nemec
,
M. D.
Towler
, and
R. J.
Needs
,
J. Chem. Phys.
132
,
034111
(
2010
).
108.
K. S.
Qin
,
T.
Ichibha
,
K.
Hongo
, and
R.
Maezono
,
Chem. Phys.
529
,
110554
(
2020
).
109.
T.
Schäfer
,
A.
Irmler
,
A.
Gallo
, and
A.
Grüneis
, arXiv:2407.01442 (
2024
).
110.
N.
Masios
,
A.
Irmler
,
T.
Schäfer
, and
A.
Grüneis
,
Phys. Rev. Lett.
131
,
186401
(
2023
).
111.
A.
Karton
and
J. M. L.
Martin
,
J. Chem. Phys.
154
,
124117
(
2021
).
112.
J.
Řezáč
and
P.
Hobza
,
J. Chem. Theory Comput.
9
,
2151
(
2013
).
113.
J.
Řezáč
,
M.
Dubecký
,
P.
Jurečka
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
17
,
19268
(
2015
).
114.
L.
Šimová
,
J.
Řezáč
, and
P.
Hobza
,
J. Chem. Theory Comput.
9
,
3420
(
2013
).
115.
D. G. A.
Smith
,
P.
Jankowski
,
M.
Slawik
,
H. A.
Witek
, and
K.
Patkowski
,
J. Chem. Theory Comput.
10
,
3140
(
2014
).
116.
G.
Santra
,
M.
Shepelenko
,
E.
Semidalas
, and
J. M. L.
Martin
, arXiv:2308.06120 (
2023
).
117.
A.
Ambrosetti
,
D.
Alfè
,
R. A. J.
DiStasio
, Jr.
, and
A.
Tkatchenko
,
J. Phys. Chem. Lett.
5
,
849
(
2014
).
118.
A.
Zen
,
S.
Sorella
,
M. J.
Gillan
,
A.
Michaelides
, and
D.
Alfè
,
Phys. Rev. B
93
,
241118
(
2016
).
119.
J. F.
Stanton
,
Chem. Phys. Lett.
281
,
130
(
1997
).
120.
A.
Karton
, “
Chapter Three–Quantum mechanical thermochemical predictions 100 years after the Schrödinger equation
,”
Annu. Rep. Comput. Chem.
18
,
123
166
(
2022
).
121.
T.
Janowski
and
P.
Pulay
,
J. Am. Chem. Soc.
134
,
17520
(
2012
).
122.
J. C.
Womack
,
N.
Mardirossian
,
M.
Head-Gordon
, and
C.-K.
Skylaris
,
J. Chem. Phys.
145
,
204114
(
2016
).
123.
J. F.
Dobson
,
Int. J. Quantum Chem.
114
,
1157
(
2014
).
124.
T.
Risthaus
and
S.
Grimme
,
J. Chem. Theory Comput.
9
,
1580
(
2013
).
125.
N.
Mehta
,
B. F.
Abrahams
, and
L.
Goerigk
,
Chem. Asian J.
15
,
1301
(
2020
).
126.
A.
Najibi
and
L.
Goerigk
,
J. Comput. Chem.
41
,
2562
(
2020
).
127.
D.
Wu
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
17
,
3967
(
2021
).
128.
E. G.
Hohenstein
and
C. D.
Sherrill
,
J. Chem. Phys.
132
,
184111
(
2010
).
129.
E. G.
Hohenstein
and
C. D.
Sherrill
,
J. Chem. Phys.
133
,
014101
(
2010
).
130.
E. G.
Hohenstein
,
R. M.
Parrish
,
C. D.
Sherrill
,
J. M.
Turney
,
H. F.
Schaefer
III
, and
F.
Henry
,
J. Chem. Phys.
135
,
174107
(
2011
).
131.
J. G.
Brandenburg
,
M.
Hochheim
,
T.
Bredow
, and
S.
Grimme
,
J. Phys. Chem. Lett.
5
,
4275
(
2014
).
You do not currently have access to this content.