Lung cancer is one of the most common cancers in humans. However, there is still a need to understand the underlying mechanisms of a normal cell developing into a cancer cell. Here, we develop the chromosome dynamic structural model and quantify the important characteristics of the chromosome structural ensemble of the normal lung cell and the lung cancer A549 cell. Our results demonstrate the essential relationship among the chromosome ensemble, the epigenetic marks, and the gene expressions, which suggests the linkage between chromosome structure and function. The analysis reveals that the lung cancer cell may have a higher level of relative ensemble fluctuation (micro CFI) and a higher degree of phase separation between the two compartments than the normal lung cell. In addition, the significant conformational “switching off” events (from compartment A to B) are more than the significant conformational “switching on” events during the lung cancerization. We identify “nucleation seeds” or hot spots in chromosomes, which initiate the transitions and determine the mechanisms. The hot spots and interaction network results reveal that the lung cancerization process (from normal lung to A549) and the reversion process have different mechanisms. These investigations have revealed the cell fate determination mechanism of the lung cancer process, which will be helpful for the further prevention and control of cancers.

1.
C. M.
Croce
, “
Oncogenes and cancer
,”
N. Engl. J. Med.
358
,
502
511
(
2008
).
2.
S. B.
Baylin
and
J. E.
Ohm
, “
Epigenetic gene silencing in cancer—A mechanism for early oncogenic pathway addiction?
,”
Nat. Rev. Cancer
6
,
107
116
(
2006
).
3.
R.
Kanwal
and
S.
Gupta
, “
Epigenetic modifications in cancer
,”
Clin. Genet.
81
,
303
311
(
2012
).
4.
W.
Timp
and
A. P.
Feinberg
, “
Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host
,”
Nat. Rev. Cancer
13
,
497
510
(
2013
).
5.
L.
Van Speybroeck
, “
From epigenesis to epigenetics: The case of C. H. Waddington
,”
Ann. N. Y. Acad. Sci.
981
,
61
81
(
2002
).
6.
F.
Jin
,
Y.
Li
,
J. R.
Dixon
,
S.
Selvaraj
,
Z.
Ye
,
A. Y.
Lee
,
C.-A.
Yen
,
A. D.
Schmitt
,
C. A.
Espinoza
, and
B.
Ren
, “
A high-resolution map of the three-dimensional chromatin interactome in human cells
,”
Nature
503
,
290
294
(
2013
).
7.
G.
Cavalli
and
T.
Misteli
, “
Functional implications of genome topology
,”
Nat. Struct. Mol. Biol.
20
,
290
299
(
2013
).
8.
B.
Bonev
and
G.
Cavalli
, “
Organization and function of the 3D genome
,”
Nat. Rev. Genet.
17
,
661
678
(
2016
).
9.
M. J.
Rowley
and
V. G.
Corces
, “
Organizational principles of 3D genome architecture
,”
Nat. Rev. Genet.
19
,
789
800
(
2018
).
10.
E.
Lieberman-Aiden
,
N. L.
van Berkum
,
L.
Williams
,
M.
Imakaev
,
T.
Ragoczy
,
A.
Telling
,
I.
Amit
,
B. R.
Lajoie
,
P. J.
Sabo
,
M. O.
Dorschner
et al, “
Comprehensive mapping of long-range interactions reveals folding principles of the human genome
,”
Science
326
,
289
293
(
2009
).
11.
J. R.
Dixon
,
S.
Selvaraj
,
F.
Yue
,
A.
Kim
,
Y.
Li
,
Y.
Shen
,
M.
Hu
,
J. S.
Liu
, and
B.
Ren
, “
Topological domains in mammalian genomes identified by analysis of chromatin interactions
,”
Nature
485
,
376
380
(
2012
).
12.
S. S.
Rao
,
M. H.
Huntley
,
N. C.
Durand
,
E. K.
Stamenova
,
I. D.
Bochkov
,
J. T.
Robinson
,
A. L.
Sanborn
,
I.
Machol
,
A. D.
Omer
,
E. S.
Lander
, and
E.
Aiden
, “
A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping
,”
Cell
159
,
1665
1680
(
2014
).
13.
T. J.
Stevens
,
D.
Lando
,
S.
Basu
,
L. P.
Atkinson
,
Y.
Cao
,
S. F.
Lee
,
M.
Leeb
,
K. J.
Wohlfahrt
,
W.
Boucher
,
A.
O’Shaughnessy-Kirwan
et al, “
3D structures of individual mammalian genomes studied by single-cell Hi-C
,”
Nature
544
,
59
64
(
2017
).
14.
T.
Nagano
,
Y.
Lubling
,
C.
Várnai
,
C.
Dudley
,
W.
Leung
,
Y.
Baran
,
N.
Mendelson Cohen
,
S.
Wingett
,
P.
Fraser
, and
A.
Tanay
, “
Cell-cycle dynamics of chromosomal organization at single-cell resolution
,”
Nature
547
,
61
67
(
2017
).
15.
L.
Tan
,
D.
Xing
,
C.-H.
Chang
,
H.
Li
, and
X. S.
Xie
, “
Three-dimensional genome structures of single diploid human cells
,”
Science
361
,
924
928
(
2018
).
16.
B.
Bintu
,
L. J.
Mateo
,
J.-H.
Su
,
N. A.
Sinnott-Armstrong
,
M.
Parker
,
S.
Kinrot
,
K.
Yamaya
,
A. N.
Boettiger
, and
X.
Zhuang
, “
Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells
,”
Science
362
,
eaau1783
(
2018
).
17.
C.
Hou
,
L.
Li
,
Z. S.
Qin
, and
V. G.
Corces
, “
Gene density, transcription, and insulators contribute to the partition of the drosophila genome into physical domains
,”
Mol. Cell
48
,
471
484
(
2012
).
18.
W. A.
Bickmore
and
B.
van Steensel
, “
Genome architecture: Domain organization of interphase chromosomes
,”
Cell
152
,
1270
1284
(
2013
).
19.
I.
Solovei
,
K.
Thanisch
, and
Y.
Feodorova
, “
How to rule the nucleus: divide et impera
,”
Curr. Opin. Cell Biol.
40
,
47
59
(
2016
).
20.
W.-T.
Chu
,
X.
Chu
, and
J.
Wang
, “
Uncovering the quantitative relationships among chromosome fluctuations, epigenetics, and gene expressions of transdifferentiation on Waddington landscape
,”
Adv. Sci.
9
,
2103617
(
2022
).
21.
J.-P.
Fortin
and
K. D.
Hansen
, “
Reconstructing A/B compartments as revealed by Hi-C using long-range correlations in epigenetic data
,”
Genome Biol.
16
,
180
(
2015
).
22.
J. H.
Gibcus
,
K.
Samejima
,
A.
Goloborodko
,
I.
Samejima
,
N.
Naumova
,
J.
Nuebler
,
M. T.
Kanemaki
,
L.
Xie
,
J. R.
Paulson
,
W. C.
Earnshaw
et al, “
A pathway for mitotic chromosome formation
,”
Science
359
,
eaao6135
(
2018
).
23.
X.
Chu
and
J.
Wang
, “
Conformational state switching and pathways of chromosome dynamics in cell cycle
,”
Appl. Phys. Rev.
7
,
031403
(
2020
).
24.
X.
Chu
and
J.
Wang
, “
Deciphering the molecular mechanism of the cancer formation by chromosome structural dynamics
,”
PLoS Comput. Biol.
17
,
e1009596
(
2021
).
25.
M. J.
Buck
and
J. D.
Lieb
, “
ChIP-chip: Considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments
,”
Genomics
83
,
349
360
(
2004
).
26.
P. J.
Park
, “
ChIP–seq: Advantages and challenges of a maturing technology
,”
Nat. Rev. Genet.
10
,
669
680
(
2009
).
27.
P. C.
Taberlay
,
A. L.
Statham
,
T. K.
Kelly
,
S. J.
Clark
, and
P. A.
Jones
, “
Reconfiguration of nucleosome-depleted regions at distal regulatory elements accompanies DNA methylation of enhancers and insulators in cancer
,”
Genome Res.
24
,
1421
1432
(
2014
).
28.
P. C.
Taberlay
,
J.
Achinger-Kawecka
,
A. T.
Lun
,
F. A.
Buske
,
K.
Sabir
,
C. M.
Gould
,
E.
Zotenko
,
S. A.
Bert
,
K. A.
Giles
,
D. C.
Bauer
et al, “
Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations
,”
Genome Res.
26
,
719
731
(
2016
).
29.
A. R.
Barutcu
,
B. R.
Lajoie
,
R. P.
McCord
,
C. E.
Tye
,
D.
Hong
,
T. L.
Messier
,
G.
Browne
,
A. J.
van Wijnen
,
J. B.
Lian
,
J. L.
Stein
et al, “
Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells
,”
Genome Biol.
16
,
214
(
2015
).
30.
M. M.
Adeel
,
H.
Jiang
,
Y.
Arega
,
K.
Cao
,
D.
Lin
,
C.
Cao
,
G.
Cao
,
P.
Wu
, and
G.
Li
, “
Structural variations of the 3D genome architecture in cervical cancer development
,”
Front. Cell Dev. Biol.
9
,
706375
(
2021
).
31.
Q.
Yang
,
N.
Jiang
,
H.
Zou
,
X.
Fan
,
T.
Liu
,
X.
Huang
,
S.
Wanggou
, and
X.
Li
, “
Alterations in 3D chromatin organization contribute to tumorigenesis of EGFR-amplified glioblastoma
,”
Comput. Struct. Biotechnol. J.
20
,
1967
1978
(
2022
).
32.
J. E.
Audia
and
R. M.
Campbell
, “
Histone modifications and cancer
,”
Cold Spring Harbor Perspect. Biol.
8
,
a019521
(
2016
).
33.
S. A.
Bert
,
M. D.
Robinson
,
D.
Strbenac
,
A. L.
Statham
,
J. Z.
Song
,
T.
Hulf
,
R. L.
Sutherland
,
M. W.
Coolen
,
C.
Stirzaker
, and
S. J.
Clark
, “
Regional activation of the cancer genome by long-range epigenetic remodeling
,”
Cancer Cell
23
,
9
22
(
2013
).
34.
P.
Chi
,
C. D.
Allis
, and
G. G.
Wang
, “
Covalent histone modifications—Miswritten, misinterpreted and mis-erased in human cancers
,”
Nat. Rev. Cancer
10
,
457
469
(
2010
).
35.
S. A.
Khan
,
D.
Reddy
, and
S.
Gupta
, “
Global histone post-translational modifications and cancer: Biomarkers for diagnosis, prognosis and treatment?
,”
World J. Biol. Chem.
6
,
333
(
2015
).
36.
M.
Esteller
, “
Epigenetics in cancer
,”
N. Engl. J. Med.
358
,
1148
1159
(
2008
).
37.
M.
Ehrlich
, “
DNA hypermethylation in disease: Mechanisms and clinical relevance
,”
Epigenetics
14
,
1141
1163
(
2019
).
38.
A. R.
Fersht
, “
Characterizing transition states in protein folding: An essential step in the puzzle
,”
Curr. Opin. Struct. Biol.
5
,
79
84
(
1995
).
39.
C.
Clementi
,
H.
Nymeyer
, and
J. N.
Onuchic
, “
Topological and energetic factors: What determines the structural details of the transition state ensemble and ‘en-route’ intermediates for protein folding? An investigation for small globular proteins
,”
J. Mol. Biol.
298
,
937
953
(
2000
).
40.
Y.
Levy
,
S. S.
Cho
,
J. N.
Onuchic
, and
P. G.
Wolynes
, “
A survey of flexible protein binding mechanisms and their transition states using native topology based energy landscapes
,”
J. Mol. Biol.
346
,
1121
1145
(
2005
).
41.
G. G.
Yardımcı
,
H.
Ozadam
,
M. E.
Sauria
,
O.
Ursu
,
K.-K.
Yan
,
T.
Yang
,
A.
Chakraborty
,
A.
Kaul
,
B. R.
Lajoie
,
F.
Song
et al, “
Measuring the reproducibility and quality of Hi-C data
,”
Genome Biol.
20
,
57
(
2019
).
42.
L.
Fiorillo
,
F.
Musella
,
M.
Conte
,
R.
Kempfer
,
A. M.
Chiariello
,
S.
Bianco
,
A.
Kukalev
,
I.
Irastorza-Azcarate
,
A.
Esposito
,
A.
Abraham
et al, “
Comparison of the Hi-C, GAM and SPRITE methods using polymer models of chromatin
,”
Nat. Methods
18
,
482
490
(
2021
).
43.
A.
Rosa
and
R.
Everaers
, “
Structure and dynamics of interphase chromosomes
,”
PLoS Comput. Biol.
4
,
e1000153
(
2008
).
44.
M.
Barbieri
,
M.
Chotalia
,
J.
Fraser
,
L.-M.
Lavitas
,
J.
Dostie
,
A.
Pombo
, and
M.
Nicodemi
, “
Complexity of chromatin folding is captured by the strings and binders switch model
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
16173
16178
(
2012
).
45.
H.
Tjong
,
K.
Gong
,
L.
Chen
, and
F.
Alber
, “
Physical tethering and volume exclusion determine higher-order genome organization in budding yeast
,”
Genome Res.
22
,
1295
1305
(
2012
).
46.
G.
Le Treut
,
F.
Képès
, and
H.
Orland
, “
A polymer model for the quantitative reconstruction of chromosome architecture from HiC and GAM data
,”
Biophys. J.
115
,
2286
2294
(
2018
).
47.
C.
Annunziatella
,
A. M.
Chiariello
,
A.
Esposito
,
S.
Bianco
,
L.
Fiorillo
, and
M.
Nicodemi
, “
Molecular dynamics simulations of the strings and binders switch model of chromatin
,”
Methods
142
,
81
88
(
2018
).
48.
G.
Gürsoy
,
Y.
Xu
,
A. L.
Kenter
, and
J.
Liang
, “
Spatial confinement is a major determinant of the folding landscape of human chromosomes
,”
Nucleic Acids Res.
42
,
8223
8230
(
2014
).
49.
G.
Gürsoy
,
Y.
Xu
,
A. L.
Kenter
, and
J.
Liang
, “
Computational construction of 3D chromatin ensembles and prediction of functional interactions of alpha-globin locus from 5C data
,”
Nucleic Acids Res.
45
,
11547
11558
(
2017
).
50.
B.
Zhang
and
P. G.
Wolynes
, “
Topology, structures, and energy landscapes of human chromosomes
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
6062
6067
(
2015
).
51.
B.
Zhang
and
P. G.
Wolynes
, “
Shape transitions and chiral symmetry breaking in the energy landscape of the mitotic chromosome
,”
Phys. Rev. Lett.
116
,
248101
(
2016
).
52.
M.
Di Pierro
,
B.
Zhang
,
E. L.
Aiden
,
P. G.
Wolynes
, and
J. N.
Onuchic
, “
Transferable model for chromosome architecture
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
12168
12173
(
2016
).
53.
M.
Di Pierro
,
R. R.
Cheng
,
E.
Lieberman Aiden
,
P. G.
Wolynes
, and
J. N.
Onuchic
, “
De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
12126
12131
(
2017
).
54.
L.
Liu
,
G.
Shi
,
D.
Thirumalai
, and
C.
Hyeon
, “
Chain organization of human interphase chromosome determines the spatiotemporal dynamics of chromatin loci
,”
PLoS Comput. Biol.
14
,
e1006617
(
2018
).
55.
A. M.
Chiariello
,
C.
Annunziatella
,
S.
Bianco
,
A.
Esposito
, and
M.
Nicodemi
, “
Polymer physics of chromosome large-scale 3D organisation
,”
Sci. Rep.
6
,
29775
(
2016
).
56.
V. G.
Contessoto
,
R. R.
Cheng
,
A.
Hajitaheri
,
E.
Dodero-Rojas
,
M. F.
Mello
,
E.
Lieberman-Aiden
,
P. G.
Wolynes
,
M.
Di Pierro
, and
J. N.
Onuchic
, “
The Nucleome Data Bank: Web-based resources to simulate and analyze the three-dimensional genome
,”
Nucleic Acids Res.
49
,
D172
D182
(
2021
).
57.
R. R.
Cheng
,
V. G.
Contessoto
,
E.
Lieberman Aiden
,
P. G.
Wolynes
,
M.
Di Pierro
, and
J. N.
Onuchic
, “
Exploring chromosomal structural heterogeneity across multiple cell lines
,”
eLife
9
,
e60312
(
2020
).
58.
A. B.
Oliveira Junior
,
V. G.
Contessoto
,
M. F.
Mello
, and
J. N.
Onuchic
, “
A scalable computational approach for simulating complexes of multiple chromosomes
,”
J. Mol. Biol.
433
,
166700
(
2021
).
59.
V. G.
Contessoto
,
R. R.
Cheng
, and
J. N.
Onuchic
, “
Uncovering the statistical physics of 3D chromosomal organization using data-driven modeling
,”
Curr. Opin. Struct. Biol.
75
,
102418
(
2022
).
60.
S.
Liu
,
L.
Zhang
,
H.
Quan
,
H.
Tian
,
L.
Meng
,
L.
Yang
,
H.
Feng
, and
Y. Q.
Gao
, “
From 1D sequence to 3D chromatin dynamics and cellular functions: A phase separation perspective
,”
Nucleic Acids Res.
46
,
9367
9383
(
2018
).
61.
H.
Abdi
and
L. J.
Williams
, “
Principal component analysis
,”
Wiley Interdiscip. Rev.: Comput. Stat.
2
,
433
459
(
2010
).
62.
M.
Spielmann
,
D. G.
Lupiáñez
, and
S.
Mundlos
, “
Structural variation in the 3D genome
,”
Nat. Rev. Genet.
19
,
453
467
(
2018
).
63.
M.
Wang
,
B. D.
Sunkel
,
W. C.
Ray
, and
B. Z.
Stanton
, “
Chromatin structure in cancer
,”
BMC Mol. Cell Biol.
23
,
35
(
2022
).
64.
D.
Guo
,
Q.
Xie
,
S.
Jiang
,
T.
Xie
,
Y.
Li
,
X.
Huang
,
F.
Li
,
T.
Wang
,
J.
Sun
,
A.
Wang
et al, “
Synergistic alterations in the multilevel chromatin structure anchor dysregulated genes in small cell lung cancer
,”
Comput. Struct. Biotechnol. J.
19
,
5946
5959
(
2021
).
65.
M.
Gridina
and
V.
Fishman
, “
Multilevel view on chromatin architecture alterations in cancer
,”
Front. Genet.
13
,
1059617
(
2022
).
66.
K. W.
McMahon
,
E.
Karunasena
, and
N.
Ahuja
, “
The roles of DNA methylation in the stages of cancer
,”
Cancer J.
23
,
257
(
2017
).
67.
F.
Dubois
,
N.
Sidiropoulos
,
J.
Weischenfeldt
, and
R.
Beroukhim
, “
Structural variations in cancer and the 3D genome
,”
Nat. Rev. Cancer
22
,
533
546
(
2022
).
68.
B. P.
Berman
,
D. J.
Weisenberger
,
J. F.
Aman
,
T.
Hinoue
,
Z.
Ramjan
,
Y.
Liu
,
H.
Noushmehr
,
C. P.
Lange
,
C. M.
van Dijk
,
R. A. E. M.
Tollenaar
et al, “
Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina–associated domains
,”
Nat. Genet.
44
,
40
46
(
2012
).
69.
K. D.
Hansen
,
W.
Timp
,
H. C.
Bravo
,
S.
Sabunciyan
,
B.
Langmead
,
O. G.
McDonald
,
B.
Wen
,
H.
Wu
,
Y.
Liu
,
D.
Diep
et al, “
Increased methylation variation in epigenetic domains across cancer types
,”
Nat. Genet.
43
,
768
775
(
2011
).
70.
S. E.
Johnstone
,
A.
Reyes
,
Y.
Qi
,
C.
Adriaens
,
E.
Hegazi
,
K.
Pelka
,
J. H.
Chen
,
L. S.
Zou
,
Y.
Drier
,
V.
Hecht
et al, “
Large-scale topological changes restrain malignant progression in colorectal cancer
,”
Cell
182
,
1474
1489.e23
(
2020
).
71.
M.
Di Pierro
,
D. A.
Potoyan
,
P. G.
Wolynes
, and
J. N.
Onuchic
, “
Anomalous diffusion, spatial coherence, and viscoelasticity from the energy landscape of human chromosomes
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
7753
7758
(
2018
).
72.
Y.
Qi
,
A.
Reyes
,
S. E.
Johnstone
,
M. J.
Aryee
,
B. E.
Bernstein
, and
B.
Zhang
, “
Data-driven polymer model for mechanistic exploration of diploid genome organization
,”
Biophys. J.
119
,
1905
1916
(
2020
).
73.
C.
Clementi
,
P. A.
Jennings
, and
J. N.
Onuchic
, “
Prediction of folding mechanism for circular-permuted proteins
,”
J. Mol. Biol.
311
,
879
890
(
2001
).
74.
R. B.
Best
and
G.
Hummer
, “
Microscopic interpretation of folding ϕ-values using the transition path ensemble
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
3263
3268
(
2016
).
75.
B.
Mair
,
J.
Moffat
,
C.
Boone
, and
B. J.
Andrews
, “
Genetic interaction networks in cancer cells
,”
Curr. Opin. Genet. Dev.
54
,
64
72
(
2019
).
76.
Z.
Arshad
and
J. F.
McDonald
, “
Changes in gene–gene interactions associated with cancer onset and progression are largely independent of changes in gene expression
,”
iScience
24
,
103522
(
2021
).
77.
T. E.
Smithgall
, “
SH2 and SH3 domains: Potential targets for anti-cancer drug design
,”
J. Pharmacol. Toxicol. Methods
34
,
125
132
(
1995
).
78.
B.
Gril
,
M.
Vidal
,
F.
Assayag
,
M.-F.
Poupon
,
W.-Q.
Liu
, and
C.
Garbay
, “
Grb2-SH3 ligand inhibits the growth of HER2+ cancer cells and has antitumor effects in human cancer xenografts alone and in combination with docetaxel
,”
Int. J. Cancer
121
,
407
415
(
2007
).
79.
N.
Kurochkina
and
U.
Guha
, “
SH3 domains: Modules of protein–protein interactions
,”
Biophys. Rev.
5
,
29
39
(
2013
).
80.
L.
Han
,
B.
Sheng
,
Q.
Zeng
,
W.
Yao
, and
Q.
Jiang
, “
Correlation between MMP2 expression in lung cancer tissues and clinical parameters: A retrospective clinical analysis
,”
BMC Pulm. Med.
20
,
283
(
2020
).
81.
P.
Mitra
,
P.
Kalailingam
,
H. B.
Tan
, and
T.
Thanabalu
, “
Overexpression of GRB2 enhances epithelial to mesenchymal transition of A549 cells by upregulating SNAIL expression
,”
Cells
7
,
97
(
2018
).
82.
A. A.
Samatar
and
P. I.
Poulikakos
, “
Targeting RAS–ERK signalling in cancer: Promises and challenges
,”
Nat. Rev. Drug Discovery
13
,
928
942
(
2014
).
83.
R. B.
Haga
and
A. J.
Ridley
, “
Rho GTPases: Regulation and roles in cancer cell biology
,”
Small GTPases
7
,
207
221
(
2016
).
84.
A.
Payapilly
,
R.
Guilbert
,
T.
Descamps
,
G.
White
,
P.
Magee
,
C.
Zhou
,
A.
Kerr
,
K. L.
Simpson
,
F.
Blackhall
,
C.
Dive
, and
A.
Malliri
, “
TIAM1-RAC1 promote small-cell lung cancer cell survival through antagonizing Nur77-induced BCL2 conformational change
,”
Cell Rep.
37
,
109979
(
2021
).
85.
J.
Jen
and
Y.-C.
Wang
, “
Zinc finger proteins in cancer progression
,”
J. Biomed. Sci.
23
,
53
(
2016
).
86.
H.
Yang
,
Q.
Zhang
,
J.
He
, and
W.
Lu
, “
Regulation of calcium signaling in lung cancer
,”
J. Thorac. Dis.
2
,
52
(
2010
).
87.
M. T.
Tran
, “
Overview of Ca2+ signaling in lung cancer progression and metastatic lung cancer with bone metastasis
,”
Explor. Targeted Anti-Tumor Ther.
2
,
249
(
2021
).
88.
F.
Cai
,
Q.
Zhu
,
Y.
Miao
,
S.
Shen
,
X.
Su
, and
Y.
Shi
, “
Desmoglein-2 is overexpressed in non-small cell lung cancer tissues and its knockdown suppresses NSCLC growth by regulation of p27 and CDK2
,”
J. Cancer Res. Clin. Oncol.
143
,
59
69
(
2017
).
89.
L.
Zhong
,
S.
Sun
,
S.
Yao
,
X.
Han
,
M.
Gu
, and
J.
Shi
, “
Histone deacetylase 5 promotes the proliferation and invasion of lung cancer cells
,”
Oncol. Rep.
40
,
2224
2232
(
2018
).
90.
J. H.
Lee
,
D. H.
Shin
,
S. Y.
Lee
,
J. Y.
Park
,
S. Y.
Kim
,
C. S.
Hwang
,
H. J.
Lee
,
J. Y.
Na
, and
J. Y.
Kim
, “
NOL4 is a novel nuclear marker of small cell carcinoma and other neuroendocrine neoplasms
,”
Histol. Histopathol.
37
,
1091
1098
(
2022
).
91.
R. M.
Brena
,
C.
Morrison
,
S.
Liyanarachchi
,
D.
Jarjoura
,
R. V.
Davuluri
,
G. A.
Otterson
,
D.
Reisman
,
S.
Glaros
,
L. J.
Rush
, and
C.
Plass
, “
Aberrant DNA methylation of OLIG1, a novel prognostic factor in non-small cell lung cancer
,”
PLoS Med.
4
,
e108
(
2007
).
92.
J.
di Iulio
,
I.
Bartha
,
E. H.
Wong
,
H.-C.
Yu
,
V.
Lavrenko
,
D.
Yang
,
I.
Jung
,
M. A.
Hicks
,
N.
Shah
,
E. F.
Kirkness
et al, “
The human noncoding genome defined by genetic diversity
,”
Nat. Genet.
50
,
333
337
(
2018
).
93.
Y.
Chen
,
M. I.
Paramo
,
Y.
Zhang
,
L.
Yao
,
S. R.
Shah
,
Y.
Jin
,
J.
Zhang
,
X.
Pan
, and
H.
Yu
, “
Finding needles in the haystack: Strategies for uncovering noncoding regulatory variants
,”
Annu. Rev. Genet.
57
,
201
222
(
2023
).
94.
S.
Wang
,
J.-H.
Su
,
B. J.
Beliveau
,
B.
Bintu
,
J. R.
Moffitt
,
C.-t.
Wu
, and
X.
Zhuang
, “
Spatial organization of chromatin domains and compartments in single chromosomes
,”
Biophys. J.
112
,
217a
(
2017
).
95.
C. R.
Clapier
,
J.
Iwasa
,
B. R.
Cairns
, and
C. L.
Peterson
, “
Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes
,”
Nat. Rev. Mol. Cell Biol.
18
,
407
422
(
2017
).
96.
Y.
Kim
and
H.
Yu
, “
Shaping of the 3D genome by the ATPase machine cohesin
,”
Exp. Mol. Med.
52
,
1891
1897
(
2020
).
97.
J. M.
Kim
,
P.
Visanpattanasin
,
V.
Jou
,
S.
Liu
,
X.
Tang
,
Q.
Zheng
,
K. Y.
Li
,
J.
Snedeker
,
L. D.
Lavis
,
T.
Lionnet
, and
C.
Wu
, “
Single-molecule imaging of chromatin remodelers reveals role of ATPase in promoting fast kinetics of target search and dissociation from chromatin
,”
eLife
10
,
e69387
(
2021
).
98.
R.
Stadhouders
,
G. J.
Filion
, and
T.
Graf
, “
Transcription factors and 3D genome conformation in cell-fate decisions
,”
Nature
569
,
345
354
(
2019
).
99.
A.
Boija
,
I. A.
Klein
,
B. R.
Sabari
,
A.
Dall’Agnese
,
E. L.
Coffey
,
A. V.
Zamudio
,
C. H.
Li
,
K.
Shrinivas
,
J. C.
Manteiga
,
N. M.
Hannett
et al, “
Transcription factors activate genes through the phase-separation capacity of their activation domains
,”
Cell
175
,
1842
1855.e16
(
2018
).
100.
B. S.
Zhao
,
I. A.
Roundtree
, and
C.
He
, “
Post-transcriptional gene regulation by mRNA modifications
,”
Nat. Rev. Mol. Cell Biol.
18
,
31
42
(
2017
).
101.
A.
Bahrami
,
S.
Lee
,
G.
Wu
,
J.
Kerstetter
,
M.
Rahvar
,
X.
Li
,
J.
Easton
,
J.
Zhang
, and
R. L.
Barnhill
, “
Pigment-synthesizing melanocytic neoplasm with protein kinase C alpha (PRKCA) fusion
,”
JAMA Dermatol.
152
,
318
322
(
2016
).
102.
G.
Michlewski
and
J. F.
Cáceres
, “
Post-transcriptional control of miRNA biogenesis
,”
RNA
25
,
1
16
(
2019
).
103.
S. K.
Nordquist
,
S. R.
Smith
, and
J. T.
Pierce
, “
Systematic functional characterization of human 21st chromosome orthologs in Caenorhabditis elegans
,”
G3: Genes, Genomes, Genet.
8
,
967
979
(
2018
).
104.
S.
Shin
,
G.
Shi
, and
D.
Thirumalai
, “
From effective interactions extracted using Hi-C data to chromosome structures in conventional and inverted nuclei
,”
PRX Life
1
,
013010
(
2023
).
105.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1–2
,
19
25
(
2015
).
106.
X.
Chu
and
J.
Wang
, “
Microscopic chromosomal structural and dynamical origin of cell differentiation and reprogramming
,”
Adv. Sci.
7
,
2001572
(
2020
).
107.
T.
Nagano
,
Y.
Lubling
,
T. J.
Stevens
,
S.
Schoenfelder
,
E.
Yaffe
,
W.
Dean
,
E. D.
Laue
,
A.
Tanay
, and
P.
Fraser
, “
Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
,”
Nature
502
,
59
64
(
2013
).
108.
M.
Imakaev
,
G.
Fudenberg
,
R. P.
McCord
,
N.
Naumova
,
A.
Goloborodko
,
B. R.
Lajoie
,
J.
Dekker
, and
L. A.
Mirny
, “
Iterative correction of Hi-C data reveals hallmarks of chromosome organization
,”
Nat. Methods
9
,
999
1003
(
2012
).
109.
The ENCODE Project Consortium
, “
An integrated encyclopedia of DNA elements in the human genome
,”
Nature
489
,
57
(
2012
).
You do not currently have access to this content.