Reactions and interactions at interfaces play pivotal roles in processes ranging from atmospheric aerosols influencing climate to battery electrodes determining charge–discharge rates to defects in catalysts controlling the fate of reactants to the outcome of biological processes at membrane interfaces. Tools to probe these surfaces at the atomic-molecular level are thus critical. Chief among non-invasive probes is the vibrational spectroscopy sum frequency generation (SFG). The complex signal amplitude generated by SFG requires techniques to interfere the unknown amplitude with a well-characterized one. An interferometric method is described to characterize the signal from any nonresonant reference material. The technique is demonstrated by measuring the phase of polycrystalline GaAs, chosen due to the strong signal and insensitivity to surface contamination. With a 515 nm visible field, the phase of GaAs is 54.5° ± 0.5°. The capability of choosing a reference based solely on its signal intensity enables probing a wide range of interfaces.

1.
W. W.
Coblentz
, “
Early history of infrared spectroradiometry
,”
Sci. Mon.
68
,
102
107
(
1949
), http://www.jstor.org/stable/19558.
2.
N.
Bloembergen
and
P. S.
Pershan
, “
Light waves at the boundary of nonlinear media
,”
Phys. Rev.
128
,
606
622
(
1962
).
3.
R. K.
Chang
,
J.
Ducuing
, and
N.
Bloembergen
, “
Relative phase measurement between fundamental and second-harmonic light
,”
Phys. Rev. Lett.
15
,
6
8
(
1965
).
4.
R. K.
Chang
and
N.
Bloembergen
, “
Experimental verification of the laws for the reflected intensity of second-harmonic light
,”
Phys. Rev.
144
,
775
780
(
1966
).
5.
J. H.
Hunt
,
P.
Guyot-Sionnest
, and
Y. R.
Shen
, “
Observation of C-H stretch vibrations of monolayers of molecules optical sum-frequency generation
,”
Chem. Phys. Lett.
133
,
189
192
(
1987
).
6.
N.
Ji
,
V.
Ostroverkhov
,
C.-Y.
Chen
, and
Y. R.
Shen
, “
Phase-sensitive sum-frequency vibrational spectroscopy and its application to studies of interfacial alkyl chains
,”
J. Am. Chem. Soc.
129
,
10056
10057
(
2007
).
7.
S.
Yamaguchi
and
T.
Tahara
, “
Heterodyne-detected electronic sum frequency generation: ‘Up’ versus ‘down’ alignment of interfacial molecules
,”
J. Chem. Phys.
129
,
101102
(
2008
).
8.
Y.
Litman
,
K.-Y.
Chiang
,
T.
Seki
,
Y.
Nagata
, and
M.
Bonn
, “
Surface stratification determines the interfacial water structure of simple electrolyte solutions
,”
Nat. Chem.
16
,
644
650
(
2024
).
9.
T.
Zhang
,
Z.-C.
Huangfu
,
Y.
Qian
,
Z.
Lu
,
H.
Gao
, and
Y.
Rao
, “
Spectral phase measurements of heterodyne detection in interfacial broadband electronic spectroscopy
,”
J. Phys. Chem. C
126
,
2823
2832
(
2022
).
10.
C.-C.
Yu
,
T.
Seki
,
K.-Y.
Chiang
,
F.
Tang
,
S.
Sun
,
M.
Bonn
, and
Y.
Nagata
, “
Polarization-dependent heterodyne-detected sum-frequency generation spectroscopy as a tool to explore surface molecular orientation and ångström-scale depth profiling
,”
J. Phys. Chem. B
126
,
6113
6124
(
2022
).
11.
S. E.
Sanders
,
A. M.
Stingel
, and
P. B.
Petersen
, “
Wedge-based design for phase stable and phase accurate heterodyne-detected sum-frequency generation spectroscopy
,”
J. Phys. Chem. Lett.
13
,
2072
2077
(
2022
).
12.
N.
Mirzajani
,
C. L.
Keenan
,
S. R.
Melton
, and
S. B.
King
, “
Accurate phase detection in time-domain heterodyne SFG spectroscopy
,”
Opt. Express
30
,
39162
39174
(
2022
).
13.
H.
Maekawa
,
S. K.
Karthick Kumar
,
S. S.
Mukherjee
, and
N.-H.
Ge
, “
Phase-sensitive vibrationally resonant sum-frequency generation microscopy in multiplex configuration at 80 MHz repetition rate
,”
J. Phys. Chem. B
125
,
9507
9516
(
2021
).
14.
I. V.
Stiopkin
,
H. D.
Jayathilake
,
A. N.
Bordenyuk
, and
A. V.
Benderskii
, “
Heterodyne-detected vibrational sum frequency generation spectroscopy
,”
J. Am. Chem. Soc.
130
,
2271
2275
(
2008
).
15.
E.
Gubbins
,
Z.
Xiong
,
B.
Hance
,
R.
Lynch
,
S.
Sibener
, and
M. J.
Shultz
, “
Phase-sensitive SFG of poly(vinyl alcohol) on calcium fluoride: Interaction with water using backside geometry,
” J. Phys. Chem. (submitted).
16.
Y. R.
Shen
,
Second Harmonic and Sum-Frequency Spectroscopy: Basics and Applications
(
World Scientific
,
Singapore
,
2023
).
17.
Y. R.
Shen
,
Fundamentals of Sum Frequency Spectroscopy
(
Cambridge University Press
,
Cambridge, UK
,
2016
).
18.
Y. R.
Shen
,
Principles of Nonlinear Optics
(
John Wiley & Sons
,
New York
,
2002
).
19.
Y. R.
Shen
,
The Principles of Nonlinear Optics
(
Wiley
,
New York
,
1984
).
20.
L.
Fu
,
S.-L.
Chen
, and
H.-F.
Wang
, “
Validation of spectra and phase in sub-1 cm–1 resolution sum-frequency generation vibrational spectroscopy through internal heterodyne phase-resolved measurement
,”
J. Phys. Chem. B
120
,
1579
1589
(
2016
).
21.
X.-H.
Hu
,
F.
Wei
,
H.
Wang
, and
H.-F.
Wang
, “
α-quartz crystal as absolute intensity and phase standard in sum-frequency generation vibrational spectroscopy
,”
J. Phys. Chem. C
123
,
15071
15086
(
2019
).
You do not currently have access to this content.