Transition path theory (TPT) offers a powerful formalism for extracting the rate and mechanism of rare dynamical transitions between metastable states. Most applications of TPT either focus on systems with modestly sized state spaces or use collective variables to try to tame the curse of dimensionality. Increasingly, expressive function approximators such as neural networks and tensor networks have shown promise in computing the central object of TPT, the committor function, even in very high-dimensional systems. That progress prompts our consideration of how one could use such a high-dimensional function to extract mechanistic insights. Here, we present and illustrate a straightforward but powerful way to track how individual dynamical coordinates evolve during a reactive event. The strategy, which involves marginalizing the reactive ensemble, naturally captures the evolution of the dynamical coordinate’s distribution, not just its mean reactive behavior.

1.
K.
Svoboda
,
C. F.
Schmidt
,
B. J.
Schnapp
, and
S. M.
Block
, “
Direct observation of kinesin stepping by optical trapping interferometry
,”
Nature
365
,
721
(
1993
).
2.
H. H.
McAdams
and
A.
Arkin
, “
Stochastic mechanisms in gene expression
,”
Proc. Natl. Acad. Sci. U. S. A.
94
,
814
(
1997
).
3.
X.
Zhuang
,
L. E.
Bartley
,
H. P.
Babcock
,
R.
Russell
,
T.
Ha
,
D.
Herschlag
, and
S.
Chu
, “
A single-molecule study of RNA catalysis and folding
,”
Science
288
,
2048
(
2000
).
4.
W. A.
Eaton
,
V.
Muñoz
,
S. J.
Hagen
,
G. S.
Jas
,
L. J.
Lapidus
,
E. R.
Henry
, and
J.
Hofrichter
, “
Fast kinetics and mechanisms in protein folding
,”
Annu. Rev. Biophys. Biomol. Struct.
29
,
327
(
2000
).
5.
I.
Golding
,
J.
Paulsson
,
S. M.
Zawilski
, and
E. C.
Cox
, “
Real-time kinetics of gene activity in individual bacteria
,”
Cell
123
,
1025
(
2005
).
6.
R. J.
Allen
,
P. B.
Warren
, and
P. R.
ten Wolde
, “
Sampling rare switching events in biochemical networks
,”
Phys. Rev. Lett.
94
,
018104
(
2005
).
7.
A.
Eldar
and
M. B.
Elowitz
, “
Functional roles for noise in genetic circuits
,”
Nature
467
,
167
(
2010
).
8.
D. T.
Gillespie
, “
A rigorous derivation of the chemical master equation
,”
Physica A
188
,
404
(
1992
).
9.
N.
van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
1992
), Vol.
1
.
10.
J. D.
Chodera
and
F.
Noé
, “
Markov state models of biomolecular conformational dynamics
,”
Curr. Opin. Struct. Biol.
25
,
135
(
2014
).
11.
B. E.
Husic
and
V. S.
Pande
, “
Markov state models: From an art to a science
,”
J. Am. Chem. Soc.
140
,
2386
(
2018
).
12.
P.
Thomas
,
N.
Popović
, and
R.
Grima
, “
Phenotypic switching in gene regulatory networks
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
6994
(
2014
).
13.
G.
Craciun
,
Y.
Tang
, and
M.
Feinberg
, “
Understanding bistability in complex enzyme-driven reaction networks
,”
Proc. Natl. Acad. Sci. U.S.A.
103
,
8697
(
2006
).
14.
E.
Ozbudak
,
M.
Thattai
,
H. N.
Lim
,
B. I.
Shraiman
, and
A.
van Oudenaarden
, “
Multistability in the lactose utilization network of Escerichia coli
,”
Nature
427
,
737
(
2004
).
15.
D. T.
Gillespie
,
A.
Hellander
, and
L. R.
Petzold
, “
Perspective: Stochastic algorithms for chemical kinetics
,”
J. Chem. Phys.
138
,
170901
(
2013
).
16.
Y.
Cao
,
D. T.
Gillespie
, and
L. R.
Petzold
, “
Efficient step size selection for the tau-leaping simulation method
,”
J. Chem. Phys.
124
,
044104
(
2006
).
17.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
, “
Reaction-rate theory: Fifty years after Kramers
,”
Rev. Mod. Phys.
62
,
251
(
1990
).
18.
C.
Dellago
,
P. G.
Bolhuis
,
F. S.
Csajka
, and
D.
Chandler
, “
Transition path sampling and the calculation of rate constants
,”
J. Chem. Phys.
108
,
1964
(
1998
).
19.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
, “
Transition path sampling: Throwing ropes over rough mountain passes, in the dark
,”
Annu. Rev. Phys. Chem.
53
,
291
(
2002
).
20.
G. E.
Crooks
and
D.
Chandler
, “
Efficient transition path sampling for nonequilibrium stochastic dynamics
,”
Phys. Rev. E
64
,
026109
(
2001
).
21.
T. R.
Gingrich
and
P. L.
Geissler
, “
Preserving correlations between trajectories for efficient path sampling
,”
J. Chem. Phys.
142
,
234104
(
2015
).
22.
R. J.
Allen
,
D.
Frenkel
, and
P. R.
ten Wolde
, “
Simulating rare events in equilibrium or nonequilibrium stochastic systems
,”
J. Chem. Phys.
124
,
024102
(
2006
).
23.
R. J.
Allen
,
C.
Valeriani
, and
P. R.
ten Wolde
, “
Forward flux sampling for rare event simulations
,”
J. Phys.: Condens.Matter
21
,
463102
(
2009
).
24.
W.
E
and
E.
Vanden-Eijnden
, “
Transition-path theory and path-finding algorithms for the study of rare events
,”
Annu. Rev. Phys. Chem.
61
,
391
(
2010
).
25.
J.
Lu
and
E.
Vanden-Eijnden
, “
Exact dynamical coarse-graining without time-scale separation
,”
J. Chem. Phys.
141
,
044109
(
2014
).
26.
W.
E
and
E.
Vanden-Eijnden
, “
Towards a theory of transition paths
,”
J. Stat. Phys.
123
,
503
(
2006
).
27.
P.
Metzner
,
C.
Schütte
, and
E.
Vanden-Eijnden
, “
Illustration of transition path theory on a collection of simple examples
,”
J. Chem. Phys.
125
,
084110
(
2006
).
28.
P.
Metzner
,
C.
Schütte
, and
E.
Vanden-Eijnden
, “
Transition path theory for Markov jump processes
,”
Multiscale Model. Simul.
7
,
1192
(
2009
).
29.
R.
Du
,
V. S.
Pande
,
A. Y.
Grosberg
,
T.
Tanaka
, and
E. S.
Shakhnovich
, “
On the transition coordinate for protein folding
,”
J. Chem. Phys.
108
,
334
(
1998
).
30.
P. G.
Bolhuis
,
C.
Dellago
, and
D.
Chandler
, “
Reaction coordinates of biomolecular isomerization
,”
Proc. Natl. Acad. Sci. U.S.A.
97
,
5877
(
2000
).
31.
Y. M.
Rhee
and
V. S.
Pande
, “
One-dimensional reaction coordinate and the corresponding potential of mean force from commitment probability distribution
,”
J. Phys. Chem. B
109
,
6780
(
2005
).
32.
A.
Ma
and
A. R.
Dinner
, “
Automatic method for identifying reaction coordinates in complex systems
,”
J. Phys. Chem. B
109
,
6769
(
2005
).
33.
W.
Lechner
,
J.
Rogal
,
J.
Juraszek
,
B.
Ensing
, and
P. G.
Bolhuis
, “
Nonlinear reaction coordinate analysis in the reweighted path ensemble
,”
J. Chem. Phys.
133
,
174110
(
2010
).
34.
M. A.
Rohrdanz
,
W.
Zheng
, and
C.
Clementi
, “
Discovering mountain passes via torchlight: Methods for the definition of reaction coordinates and pathways in complex macromolecular reactions
,”
Annu. Rev. Phys. Chem.
64
,
295
(
2013
).
35.
K.
Neupane
,
A. P.
Manuel
, and
M. T.
Woodside
, “
Protein folding trajectories can be described quantitatively by one-dimensional diffusion over measured energy landscapes
,”
Nat. Phys.
12
,
700
(
2016
).
36.
R.
Elber
,
J. M.
Bello-Rivas
,
P.
Ma
,
A. E.
Cardenas
, and
A.
Fathizadeh
, “
Calculating iso-committor surfaces as optimal reaction coordinates with milestoning
,”
Entropy
19
,
219
(
2017
).
37.
Z.
He
,
C.
Chipot
, and
B.
Roux
, “
Committor-consistent variational string method
,”
J. Phys. Chem. Lett.
13
,
9263
(
2022
).
38.
B.
Roux
, “
Transition rate theory, spectral analysis, and reactive paths
,”
J. Chem. Phys.
156
,
134111
(
2022
).
39.
H.
Jung
,
R.
Covino
,
A.
Arjun
,
C.
Leitold
,
C.
Dellago
,
P. G.
Bolhuis
, and
G.
Hummer
, “
Machine-guided path sampling to discover mechanisms of molecular self-organization
,”
Nat. Comput. Sci.
3
,
334
(
2023
).
40.
L.
Evans
,
M. K.
Cameron
, and
P.
Tiwary
, “
Computing committors in collective variables via Mahalanobis diffusion maps
,”
Appl. Comput. Harmon. Anal.
64
,
62
(
2023
).
41.
P. L.
Geissler
,
C.
Dellago
, and
D.
Chandler
, “
Kinetic pathways of ion pair dissociation in water
,”
J. Phys. Chem. B
103
,
3706
(
1999
).
42.
G.
Hummer
, “
From transition paths to transition states and rate coefficients
,”
J. Chem. Phys.
120
,
516
(
2004
).
43.
R. B.
Best
and
G.
Hummer
, “
Reaction coordinates and rates from transition paths
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
6732
(
2005
).
44.
P. V.
Banushkina
and
S. V.
Krivov
, “
Optimal reaction coordinates
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
6
,
748
(
2016
).
45.
B.
Peters
, “
Reaction coordinates and mechanistic hypothesis tests
,”
Annu. Rev. Phys. Chem.
67
,
669
(
2016
).
46.
W.
Zhang
,
C.
Hartmann
, and
C.
Schütte
, “
Effective dynamics along given reaction coordinates, and reaction rate theory
,”
Faraday Discuss.
195
,
365
(
2016
).
47.
S. V.
Krivov
, “
Protein folding free energy landscape along the committor—The optimal folding coordinate
,”
J. Chem. Theory Comput.
14
,
3418
(
2018
).
48.
S.
Wu
,
H.
Li
, and
A.
Ma
, “
A rigorous method for identifying a one-dimensional reaction coordinate in complex molecules
,”
J. Chem. Theory Comput.
18
,
2836
(
2022
).
49.
L.
Mouaffac
,
K.
Palacio-Rodriguez
, and
F.
Pietrucci
, “
Optimal reaction coordinates and kinetic rates from the projected dynamics of transition paths
,”
J. Chem. Theory Comput.
19
,
5701
(
2023
).
50.
H.
Chen
,
B.
Roux
, and
C.
Chipot
, “
Discovering reaction pathways, slow variables, and committor probabilities with machine learning
,”
J. Chem. Theory Comput.
19
,
4414
(
2023
).
51.
E. H.
Thiede
,
D.
Giannakis
,
A. R.
Dinner
, and
J.
Weare
, “
Galerkin approximation of dynamical quantities using trajectory data
,”
J. Chem. Phys.
150
,
244111
(
2019
).
52.
J.
Strahan
,
A.
Antoszewski
,
C.
Lorpaiboon
,
B. P.
Vani
,
J.
Weare
, and
A. R.
Dinner
, “
Long-time-scale predictions from short-trajectory data: A benchmark analysis of the Trp-cage miniprotein
,”
J. Chem. Theory Comput.
17
,
2948
2963
(
2021
).
53.
D.
Aristoff
,
M.
Johnson
,
G.
Simpson
, and
R. J.
Webber
, “
The fast committor machine: Interpretable prediction with kernels
,”
J. Chem. Phys.
161
(8),
084113
(
2024
).
54.
S. C.
Guo
,
R.
Shen
,
B.
Roux
, and
A. R.
Dinner
, “
Dynamics of activation in the voltage-sensing domain of Ciona intestinalis phosphatase Ci-VSP
,”
Nat. Commun.
15
,
1408
(
2024
).
55.
G. M.
Rotskoff
,
A. R.
Mitchell
, and
E.
Vanden-Eijnden
, “
Active importance sampling for variational objectives dominated by rare events: Consequences for optimization and generalization
,” in
Mathematical and Scientific Machine Learning
(
PMLR
,
2022
), pp.
757
780
.
56.
J.
Strahan
,
J.
Finkel
,
A. R.
Dinner
, and
J.
Weare
, “
Predicting rare events using neural networks and short-trajectory data
,”
J. Comput. Phys.
488
,
112152
(
2023
).
57.
Y.
Khoo
,
J.
Lu
, and
L.
Ying
, “
Solving for high-dimensional committor functions using artificial neural networks
,”
Res. Math. Sci.
6
,
1
(
2018
).
58.
M. R.
Hasyim
,
C. H.
Batton
, and
K. K.
Mandadapu
, “
Supervised learning and the finite-temperature string method for computing committor functions and reaction rates
,”
J. Chem. Phys.
157
,
184111
(
2022
).
59.
Q.
Li
,
B.
Lin
, and
W.
Ren
, “
Computing committor functions for the study of rare events using deep learning
,”
J. Chem. Phys.
151
,
054112
(
2019
).
60.
V.
Jacques-Dumas
,
R. M.
van Westen
,
F.
Bouchet
, and
H. A.
Dijkstra
, “
Data-driven methods to estimate the committor function in conceptual ocean models
,”
Nonlinear Process. Geophys.
30
,
195
(
2023
).
61.
B.
Lin
and
W.
Ren
, “
Deep learning method for computing committor functions with adaptive sampling
,” arXiv:2404.06206 (
2024
).
62.
Y.
Chen
,
J.
Hoskins
,
Y.
Khoo
, and
M.
Lindsey
, “
Committor functions via tensor networks
,”
J. Comput. Phys.
472
,
111646
(
2023
).
63.
F.
Noé
,
C.
Schütte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
, “
Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
19011
(
2009
).
64.
T. J.
Lane
,
G. R.
Bowman
,
K.
Beauchamp
,
V. A.
Voelz
, and
V. S.
Pande
, “
Markov state model reveals folding and functional dynamics in ultra-long MD trajectories
,”
J. Am. Chem. Soc.
133
,
218413
(
2011
).
65.
J.
Finkel
,
R. J.
Webber
,
E. P.
Gerber
,
D. S.
Abbot
, and
J.
Weare
, “
Data-driven transition path analysis yields a statistical understanding of sudden stratospheric warming events in an idealized model
,”
J. Atmos. Sci.
80
,
519
(
2023
).
66.
M.
Cameron
and
E.
Vanden-Eijnden
, “
Flows in complex networks: Theory, algorithms, and application to Lennard–Jones cluster rearrangement
,”
J. Stat. Phys.
156
,
427
(
2014
).
67.
M. D.
Louwerse
and
D. A.
Sivak
, “
Information thermodynamics of the transition-path ensemble
,”
Phys. Rev. Lett.
128
,
170602
(
2022
).
68.
V. A.
Voelz
,
G. R.
Bowman
,
K.
Beauchamp
, and
V. S.
Pande
, “
Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1–39)
,”
J. Am. Chem. Soc.
132
,
1526
(
2010
).
69.
D.
Shuklar
,
Y.
Meng
,
B.
Roux
, and
V. S.
Pande
, “
Activation pathway of Src kinase reveals intermediate states as targets for drug design
,”
J. Am. Chem. Soc.
132
,
1526
(
2010
).
70.
E.
Guarnera
and
E.
Vanden-Eijnden
, “
Optimized Markov state models for metastable systems
,”
J. Chem. Phys.
145
,
024102
(
2016
).
71.
Y.
Liu
,
D. P.
Hickey
,
S. D.
Minteer
,
A.
Dickson
, and
S.
Calabrese Barton
, “
Markov-state transition path analysis of electrostatic channeling
,”
J. Phys. Chem. C
123
,
15284
(
2019
).
72.
R.
Banerjee
and
R. I.
Cukier
, “
Transition paths of met-enkephalin from Markov state modeling of a molecular dynamics trajectory
,”
J. Phys. Chem. B
118
,
2883
(
2014
).
73.
B. P.
Vani
,
J.
Weare
, and
A. R.
Dinner
, “
Computing transition path theory quantities with trajectory stratification
,”
J. Chem. Phys.
157
,
034106
(
2022
).
74.
B. W.
Silverman
,
Density Estimation
(
Chapman & Hall
,
London
,
1986
), Vol.
1
.
75.
N. E.
Strand
,
R.-S.
Fu
, and
T. R.
Gingrich
, “
Current inversion in a periodically driven two-dimensional Brownian ratchet
,”
Phys. Rev. E
102
,
012141
(
2020
).
76.
M.
Doi
, “
Stochastic theory of diffusion-controlled reaction
,”
J. Phys. A: Math. Gen.
9
,
1479
(
1976
).
77.
L.
Peliti
, “
Path integral approach to birth-death processes on a lattice
,”
J. Phys.
46
,
1469
(
1985
).
78.
S. B.
Nicholson
and
T. R.
Gingrich
, “
Quantifying rare events in stochastic reaction–diffusion dynamics using tensor networks
,”
Phys. Rev. X
13
,
041006
(
2023
).
79.
M.
Hegland
and
J.
Garcke
, “
On the numerical solution of the chemical master equation with sums of rank one tensors
,”
ANZIAM J.
52
,
C628
(
2011
).
80.
V.
Kazeev
,
M.
Khammash
,
M.
Nip
, and
C.
Schwab
, “
Direct solution of the chemical master equation using quantized tensor trains
,”
PLoS Comput. Biol.
10
,
e1003359
(
2014
).
81.
S.
Liao
,
T.
Vejchodský
, and
R.
Erban
, “
Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks
,”
J. R. Soc. Interface
12
,
20150233
(
2015
).
82.
S.
Dolgov
and
B.
Khoromskij
, “
Simultaneous state-time approximation of the chemical master equation using tensor product formats
,”
Numer. Linear Algebra Appl.
22
,
197
(
2015
).
83.
P.
Gelß
,
S.
Matera
, and
C.
Schütte
, “
Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model
,”
J. Comput. Phys.
314
,
489
(
2016
).
84.
H. D.
Vo
and
R. B.
Sidje
, “
An adaptive solution to the chemical master equation using tensors
,”
J. Chem. Phys.
147
,
044102
(
2017
).
85.
I. G.
Ion
,
C.
Wildner
,
D.
Loukrezis
,
H.
Koeppl
, and
H.
De Gersem
, “
Tensor-train approximation of the chemical master equation and its application for parameter inference
,”
J. Chem. Phys.
155
,
034102
(
2021
).
You do not currently have access to this content.