Ytterbium lasers make possible shot-to-shot data collection of two-dimensional infrared (2D IR) spectra at 100 kHz and higher repetition rates. At those rates, the power absorbed by the sample is appreciable and creates a steady state temperature rise and an accumulated thermal grating artifact in the spectra that can obscure weak or low concentration IR chromophores. We report the magnitude of the temperature rise, the pulse ordering by which it is created, and ways to mitigate it. Using a calibrant molecule, we measured a steady-state temperature up to 32.5 and 45 °C for laser light at 4 µm in H2O and 6 µm in D2O, respectively, for a typical optical density used in 2D IR experiments. The temperature reached a steady state in ∼60 s. The temperature rise scales with the integrated optical density of the sample across the laser spectrum. By cooling the sample cell, we returned the steady state temperature to room temperature within the laser focus. For samples that undergo rotation, the accumulated thermal grating artifact is removed using a perpendicular ⟨XXYY⟩ polarization because the permuted time-orderings of the thermal grating artifact has the orientational response ⟨XYXY⟩, which decays to zero during the delay between consecutive laser pulses. The procedure described in this study can be used to characterize and minimize the thermal effects in experiments where repetition rate and/or pulse energy cause an appreciable temperature rise.

1.
P. M.
Donaldson
,
G. M.
Greetham
,
C. T.
Middleton
,
B. M.
Luther
,
M. T.
Zanni
,
P.
Hamm
, and
A. T.
Krummel
, “
Breaking barriers in ultrafast spectroscopy and imaging using 100 KHz amplified Yb-laser systems
,”
Acc. Chem. Res.
56
(
15
),
2062
2071
(
2023
).
2.
G. M.
Greetham
,
P. M.
Donaldson
,
C.
Nation
,
I. V.
Sazanovich
,
I. P.
Clark
,
D. J.
Shaw
,
A. W.
Parker
, and
M.
Towrie
, “
A 100 kHz time-resolved multiple-probe femtosecond to second infrared absorption spectrometer
,”
Appl. Spectrosc.
70
(
4
),
645
653
(
2016
).
3.
K. M.
Farrell
,
J. S.
Ostrander
,
A. C.
Jones
,
B. R.
Yakami
,
S. S.
Dicke
,
C. T.
Middleton
,
P.
Hamm
, and
M. T.
Zanni
, “
Shot-to-shot 2D IR spectroscopy at 100 KHz using a Yb laser and custom-designed electronics
,”
Opt. Express
28
(
22
),
33584
(
2020
).
4.
P. M.
Donaldson
,
G. M.
Greetham
,
D. J.
Shaw
,
A. W.
Parker
, and
M.
Towrie
, “
A 100 KHz pulse shaping 2D-IR spectrometer based on dual Yb:KGW amplifiers
,”
J. Phys. Chem. A
122
(
3
),
780
787
(
2018
).
5.
R. P.
McDonnell
,
K.
Oram
,
M. A.
Boyer
,
D. D.
Kohler
,
K. A.
Meyer
,
E. L.
Sibert
III
, and
J. C.
Wright
, “
Direct probe of vibrational fingerprint and combination band coupling
,”
J. Phys. Chem. Lett.
15
(
14
),
3975
3981
(
2024
).
6.
A.
Ghosh
,
J. S.
Ostrander
, and
M. T.
Zanni
, “
Watching proteins wiggle: Mapping structures with two-dimensional infrared spectroscopy
,”
Chem. Rev.
117
(
16
),
10726
10759
(
2017
).
7.
B.
Huber
,
S.
Pres
,
E.
Wittmann
,
L.
Dietrich
,
J.
Lüttig
,
D.
Fersch
,
E.
Krauss
,
D.
Friedrich
,
J.
Kern
,
V.
Lisinetskii
,
M.
Hensen
,
B.
Hecht
,
R.
Bratschitsch
,
E.
Riedle
, and
T.
Brixner
, “
Space- and time-resolved UV-to-NIR surface spectroscopy and 2D nanoscopy at 1 MHz repetition rate
,”
Rev. Sci. Instrum.
90
(
11
),
113103
(
2019
).
8.
K.-H.
Song
,
M.
Gu
,
M.-S.
Kim
,
H.-J.
Kwon
,
H.
Rhee
,
H.
Han
, and
M.
Cho
, “
Quantum beats and phase shifts in two-dimensional electronic spectra of zinc naphthalocyanine monomer and aggregate
,”
J. Phys. Chem. Lett.
6
(
21
),
4314
4318
(
2015
).
9.
I.
Schlesinger
,
X.
Zhao
,
N. E.
Powers-Riggs
, and
M. R.
Wasielewski
, “
Singlet fission in terrylenediimide single crystals: Competition between biexciton annihilation and free triplet exciton formation
,”
J. Phys. Chem. C
125
(
25
),
13946
13953
(
2021
).
10.
C.
Lin
,
T.
Kim
,
J. D.
Schultz
,
R. M.
Young
, and
M. R.
Wasielewski
, “
Accelerating symmetry-breaking charge separation in a perylenediimide trimer through a vibronically coherent dimer intermediate
,”
Nat. Chem.
14
(
7
),
786
793
(
2022
).
11.
N. M.
Kearns
,
R. D.
Mehlenbacher
,
A. C.
Jones
, and
M. T.
Zanni
, “
Broadband 2D electronic spectrometer using white light and pulse shaping: Noise and signal evaluation at 1 and 100 KHz
,”
Opt. Express
25
(
7
),
7869
(
2017
).
12.
M.
Dantus
and
V. V.
Lozovoy
, “
Experimental coherent laser control of physicochemical processes
,”
Chem. Rev.
104
(
4
),
1813
1860
(
2004
).
13.
D. B.
Strasfeld
,
S.-H.
Shim
, and
M. T.
Zanni
, “
Controlling vibrational excitation with shaped mid-IR pulses
,”
Phys. Rev. Lett.
99
(
3
),
038102
(
2007
).
14.
R.
Fritzsch
,
P. M.
Donaldson
,
G. M.
Greetham
,
M.
Towrie
,
A. W.
Parker
,
M. J.
Baker
, and
N. T.
Hunt
, “
Rapid screening of DNA–ligand complexes via 2D-IR spectroscopy and ANOVA–PCA
,”
Anal. Chem.
90
(
4
),
2732
2740
(
2018
).
15.
J.
Helbing
and
P.
Hamm
, “
Versatile femtosecond laser synchronization for multiple-timescale transient infrared spectroscopy
,”
J. Phys. Chem. A
127
(
30
),
6347
6356
(
2023
).
16.
M.
Cho
, “
Molecular photothermal effects, diffusion, and sample flow in time-resolved spectroscopy and microscopy
,”
J. Chem. Phys.
159
(
22
),
224104
(
2023
).
17.
G. M.
Greetham
,
I. P.
Clark
,
B.
Young
,
R.
Fritsch
,
L.
Minnes
,
N. T.
Hunt
, and
M.
Towrie
, “
Time-resolved temperature-jump infrared spectroscopy at a high repetition rate
,”
Appl. Spectrosc.
74
(
6
),
720
727
(
2020
).
18.
B.
Ashwood
,
N. H. C.
Lewis
,
P. J.
Sanstead
, and
A.
Tokmakoff
, “
Temperature-jump 2D IR spectroscopy with intensity-modulated CW optical heating
,”
J. Phys. Chem. B
124
(
39
),
8665
8677
(
2020
).
19.
P. M.
Donaldson
,
R. F.
Howe
,
A. P.
Hawkins
,
M.
Towrie
, and
G. M.
Greetham
, “
Ultrafast 2D-IR spectroscopy of intensely optically scattering pelleted solid catalysts
,”
J. Chem. Phys.
158
(
11
),
114201
(
2023
).
20.
R.
Schanz
,
V.
Boţan
, and
P.
Hamm
, “
A femtosecond study of the infrared-driven cis-trans isomerization of nitrous acid (HONO)
,”
J. Chem. Phys.
122
(
4
),
044509
(
2005
).
21.
L.
Minnes
,
G. M.
Greetham
,
D. J.
Shaw
,
I. P.
Clark
,
R.
Fritzsch
,
M.
Towrie
,
A. W.
Parker
,
A. J.
Henry
,
R. J.
Taylor
, and
N. T.
Hunt
, “
Uncovering the early stages of domain melting in Calmodulin with ultrafast temperature-jump infrared spectroscopy
,”
J. Phys. Chem. B
123
(
41
),
8733
8739
(
2019
).
22.
A.
Ghosh
,
A. L.
Serrano
,
T. A.
Oudenhoven
,
J. S.
Ostrander
,
E. C.
Eklund
,
A. F.
Blair
, and
M. T.
Zanni
, “
Experimental implementations of 2D IR spectroscopy through a horizontal pulse shaper design and a focal plane array detector
,”
Opt. Lett.
41
(
3
),
524
(
2016
).
23.
C. P.
Howe
,
G. M.
Greetham
,
B.
Procacci
,
A. W.
Parker
, and
N. T.
Hunt
, “
Sequence-dependent melting and refolding dynamics of RNA UNCG tetraloops using temperature-jump/drop infrared spectroscopy
,”
J. Phys. Chem. B
127
(
7
),
1586
1597
(
2023
).
24.
C. P.
Howe
,
G. M.
Greetham
,
B.
Procacci
,
A. W.
Parker
, and
N. T.
Hunt
, “
Measuring RNA UNCG tetraloop refolding dynamics using temperature-jump/drop infrared spectroscopy
,”
J. Phys. Chem. Lett.
13
(
39
),
9171
9176
(
2022
).
25.
A. P.
Hawkins
,
A. E.
Edmeades
,
C. D. M.
Hutchison
,
M.
Towrie
,
R. F.
Howe
,
G. M.
Greetham
, and
P. M.
Donaldson
, “
Laser induced temperature-jump time resolved IR spectroscopy of zeolites
,”
Chem. Sci.
15
(
10
),
3453
3465
(
2024
).
26.
J.
Crank
,
The Mathematics of Diffusion
, 2nd ed. (
Oxford
,
1975
).
27.
R. M.
Hochstrasser
, “
Two-dimensional IR-spectroscopy: Polarization anisotropy effects
,”
Chem. Phys.
266
(
2–3
),
273
284
(
2001
).
28.
A.
Zilian
and
J. C.
Wright
, “
Polarization effects in four-wave mixing of isotropic samples
,”
Mol. Phys.
87
(
6
),
1261
1271
(
1996
).
29.
A. B.
Myers
and
R. M.
Hochstrasser
, “
Comparison of four-wave mixing techniques for studying orientational relaxation
,”
IEEE J. Quantum Electron.
22
(
8
),
1482
1492
(
1986
).
30.
J.
Marti
,
J. A.
Padró
, and
E.
Guàrdia
, “
Molecular dynamics calculation of the infrared spectra in liquid H2O-D2O mixtures
,”
J. Mol. Liq.
62
(
1–3
),
17
31
(
1994
).
31.
A. L.
Farmer
,
K.
Brown
, and
N. T.
Hunt
, “
Spectroscopy 2050—The future of ultrafast 2D-IR spectroscopy
,”
Vib. Spectrosc.
134
,
103709
(
2024
).
32.
S. H.
Rutherford
,
G. M.
Greetham
,
A. W.
Parker
,
A.
Nordon
,
M. J.
Baker
, and
N. T.
Hunt
, “
Measuring proteins in H2O using 2D-IR spectroscopy: Pre-processing steps and applications toward a protein library
,”
J. Chem. Phys.
157
(
20
),
205102
(
2022
).
33.
M. J.
Ryan
,
L.
Gao
,
F. I.
Valiyaveetil
,
A. A.
Kananenka
, and
M. T.
Zanni
, “
Water inside the selectivity filter of a K+ ion channel: Structural heterogeneity, picosecond dynamics, and hydrogen bonding
,”
J. Am. Chem. Soc.
146
(
2
),
1543
1553
(
2024
).
34.
A. D.
Robertson
and
K. P.
Murphy
, “
Protein structure and the energetics of protein stability
,”
Chem. Rev.
97
(
5
),
1251
1268
(
1997
).
35.
D. S.
Vazquez
,
P. L.
Toledo
,
A. R.
Gianotti
, and
M. R.
Ermácora
, “
Protein conformation and biomolecular condensates
,”
Curr. Res. Struct. Biol.
4
,
285
307
(
2022
).
36.
K. J.
Laidler
, “
The development of the Arrhenius equation
,”
J. Chem. Educ.
61
(
6
),
494
(
1984
).
37.
S.
Arrhenius
, “
Über die dissociationswärme und den einfluss der temperatur auf den dissociationsgrad der elektrolyte
,”
Z. Phys. Chem.
4U
(
1
),
96
116
(
1889
).
You do not currently have access to this content.