We propose a trajectory-based quasi-classical method for approximating dynamics in condensed phase systems. Building upon the previously developed optimized mean trajectory approximation that has been used to compute linear and nonlinear spectra, we borrow some ideas from filtering trajectory methods to obtain a novel semiclassical method for the dynamical propagation of density matrices. This new approximation is tested rigorously against standard multistate electronic models, spin-boson models, and models of the Fenna–Matthews–Olson complex. For dissipative systems, the current method is significantly better or as good as many other semiclassical methods available, especially at low temperatures and for off-diagonal density matrix elements, whereas for scattering models, the current method bears similar limitations as mean-field propagation schemes. All results are tested against the numerically exact hierarchical equations of motion method. The new method shows excellent agreement across various parameter regimes with numerically exact results, highlighting the robustness and accuracy of our approach.

1.
M. F.
Herman
, “
Dynamics by semiclassical methods
,”
Annu. Rev. Phys. Chem.
45
,
83
(
1994
).
2.
M.
Thoss
and
H.
Wang
, “
Semiclassical description of molecular dynamics based on initial-value representation methods
,”
Annu. Rev. Phys. Chem.
55
,
299
(
2004
).
3.
A. W.
Jasper
,
S.
Nangia
,
C.
Zhu
, and
D. G.
Truhlar
, “
Non-Born–Oppenheimer molecular dynamics
,”
Acc. Chem. Res.
39
,
101
(
2006
).
4.
R.
Kapral
, “
Progress in the theory of mixed quantum-classical dynamics
,”
Annu. Rev. Phys. Chem.
57
,
129
(
2006
).
5.
W. H.
Miller
, “
Electronically nonadiabatic dynamics via semiclassical initial value methods
,”
J. Phys. Chem. A
113
,
1405
(
2009
).
6.
J. C.
Tully
, “
Molecular dynamics with electronic transitions
,”
J. Chem. Phys.
93
,
1061
(
1990
).
7.
U.
Müller
and
G.
Stock
, “
Surface-hopping modeling of photoinduced relaxation dynamics on coupled potential-energy surfaces
,”
J. Chem. Phys.
107
,
6230
(
1997
).
8.
D.
Mac Kernan
,
G.
Ciccotti
, and
R.
Kapral
, “
Surface-hopping dynamics of a spin-boson system
,”
J. Chem. Phys.
116
,
2346
(
2002
).
9.
N.
Shenvi
,
J. E.
Subotnik
, and
W.
Yang
, “
Simultaneous-trajectory surface hopping: A parameter-free algorithm for implementing decoherence in nonadiabatic dynamics
,”
J. Chem. Phys.
134
,
144102
(
2011
).
10.
M.
Barbatti
, “
Nonadiabatic dynamics with trajectory surface hopping method
,”
Wiley Interdiscip. Rev.:Comput. Mol. Sci.
1
,
620
(
2011
).
11.
J. E.
Subotnik
,
A.
Jain
,
B.
Landry
,
A.
Petit
,
W.
Ouyang
, and
N.
Bellonzi
, “
Understanding the surface hopping view of electronic transitions and decoherence
,”
Annu. Rev. Phys. Chem.
67
,
387
(
2016
).
12.
G.
Käb
, “
Mean field ehrenfest quantum/classical simulation of vibrational energy relaxation in a simple liquid
,”
Phys. Rev. E
66
,
046117
(
2002
).
13.
J. R.
Mannouch
and
J. O.
Richardson
, “
A partially linearized spin-mapping approach for simulating nonlinear optical spectra
,”
J. Chem. Phys.
156
,
024108
(
2022
).
14.
H.-D.
Meyer
and
W. H.
Miller
, “
A classical analog for electronic degrees of freedom in nonadiabatic collision processes
,”
J. Chem. Phys.
70
,
3214
(
1979
).
15.
X.
Li
,
J. C.
Tully
,
H. B.
Schlegel
, and
M. J.
Frisch
, “
Ab initio Ehrenfest dynamics
,”
J. Chem. Phys.
123
,
084106
(
2005
).
16.
J. W.
Park
and
T.
Shiozaki
, “
On-the-fly CASPT2 surface-hopping dynamics
,”
J. Chem. Theory Comput.
13
,
3676
(
2017
).
17.
P.
Vindel-Zandbergen
,
L. M.
Ibele
,
J.-K.
Ha
,
S. K.
Min
,
B. F.
Curchod
, and
N. T.
Maitra
, “
Study of the decoherence correction derived from the exact factorization approach for nonadiabatic dynamics
,”
J. Chem. Theory Comput.
17
,
3852
(
2021
).
18.
A.
Jain
and
A.
Sindhu
, “
Pedagogical overview of the fewest switches surface hopping method
,”
ACS Omega
7
,
45810
(
2022
).
19.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
, “
The multi-configurational time-dependent hartree approach
,”
Chem. Phys. Lett.
165
,
73
(
1990
).
20.
H.
Wang
and
M.
Thoss
, “
Multilayer formulation of the multiconfiguration time-dependent hartree theory
,”
J. Chem. Phys.
119
,
1289
(
2003
).
21.
W. H.
Miller
, “
Classical s matrix: Numerical application to inelastic collisions
,”
J. Chem. Phys.
53
,
3578
(
1970
).
22.
E. J.
Heller
, “
Cellular dynamics: A new semiclassical approach to time-dependent quantum mechanics
,”
J. Chem. Phys.
94
,
2723
(
1991
).
23.
C.-Y.
Hsieh
and
R.
Kapral
, “
Nonadiabatic dynamics in open quantum-classical systems: Forward-backward trajectory solution
,”
J. Chem. Phys.
137
,
22A507
(
2012
).
24.
C.-Y.
Hsieh
and
R.
Kapral
, “
Analysis of the forward-backward trajectory solution for the mixed quantum-classical liouville equation
,”
J. Chem. Phys.
138
,
134110
(
2013
).
25.
H.
Kim
,
A.
Nassimi
, and
R.
Kapral
, “
Quantum-classical liouville dynamics in the mapping basis
,”
J. Chem. Phys.
129
,
084102
(
2008
).
26.
A.
Kelly
,
R.
Van Zon
,
J.
Schofield
, and
R.
Kapral
, “
Mapping quantum-classical liouville equation: Projectors and trajectories
,”
J. Chem. Phys.
136
,
084101
(
2012
).
27.
J.
Liu
, “
Recent advances in the linearized semiclassical initial value representation/classicalWigner model for the thermal correlation function
,”
Int. J. Quantum Chem.
115
,
657
(
2015
).
28.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
, “
Semiclassical theory of electronically nonadiabatic dynamics: Results of a linearized approximation to the initial value representation
,”
J. Chem. Phys.
109
,
7064
(
1998
).
29.
H.
Wang
,
X.
Song
,
D.
Chandler
, and
W. H.
Miller
, “
Semiclassical study of electronically nonadiabatic dynamics in the condensed-phase: Spin-boson problem with Debye spectral density
,”
J. Chem. Phys.
110
,
4828
(
1999
).
30.
N.
Ananth
,
C.
Venkataraman
, and
W. H.
Miller
, “
Semiclassical description of electronically nonadiabatic dynamics via the initial value representation
,”
J. Chem. Phys.
127
,
084114
(
2007
).
31.
E.
Martin-Fierro
and
E.
Pollak
, “
Semiclassical initial value series solution of the spin boson problem
,”
J. Chem. Phys.
126
,
164108
(
2007
).
32.
X.
Gao
and
E.
Geva
, “
Improving the accuracy of quasiclassical mapping Hamiltonian methods by treating the window function width as an adjustable parameter
,”
J. Phys. Chem. A
124
,
11006
(
2020
).
33.
D. A.
Uken
,
A.
Sergi
, and
F.
Petruccione
, “
Filtering schemes in the quantum-classical liouville approach to nonadiabatic dynamics
,”
Phys. Rev. E
88
,
033301
(
2013
).
34.
J. R.
Mannouch
and
J. O.
Richardson
, “
A mapping approach to surface hopping
,”
J. Chem. Phys.
158
,
104111
(
2023
).
35.
J. E.
Runeson
and
D. E.
Manolopoulos
, “
A multi-state mapping approach to surface hopping
,”
J. Chem. Phys.
159
,
094115
(
2023
).
36.
J. E.
Lawrence
,
J. R.
Mannouch
, and
J. O.
Richardson
, “
A size-consistent multi-state mapping approach to surface hopping
,” arXiv:2403.10627 (
2024
).
37.
K.
Polley
and
R. F.
Loring
, “
Spectroscopic response theory with classical mapping Hamiltonians
,”
J. Chem. Phys.
153
,
204103
(
2020
).
38.
R. F.
Loring
, “
Calculating multidimensional optical spectra from classical trajectories
,”
Annu. Rev. Phys. Chem.
73
,
273
(
2022
).
39.
C.
McCurdy
,
H.
Meyer
, and
W.
Miller
, “
Classical model for electronic degrees of freedom in nonadiabatic collision processes: Pseudopotential analysis and calculations for F(2P1/2)+H+,Xe→F(2P3/2)+H+,Xe
,”
J. Chem. Phys.
70
,
3177
(
1979
).
40.
H.-D.
Meyer
and
W. H.
Miller
, “
Analysis and extension of some recently proposed classical models for electronic degrees of freedom
,”
J. Chem. Phys.
72
,
2272
(
1980
).
41.
M.
Thoss
and
G.
Stock
, “
Mapping approach to the semiclassical description of nonadiabatic quantum dynamics
,”
Phys. Rev. A
59
,
64
(
1999
).
42.
M.
Thoss
,
W. H.
Miller
, and
G.
Stock
, “
Semiclassical description of nonadiabatic quantum dynamics: Application to the S1–S2 conical intersection in pyrazine
,”
J. Chem. Phys.
112
,
10282
(
2000
).
43.
J.
Shao
and
N.
Makri
, “
Forward–backward semiclassical dynamics with linear scaling
,”
J. Phys. Chem. A
103
,
9479
(
1999
).
44.
A. L.
Kaledin
and
W. H.
Miller
, “
Time averaging the semiclassical initial value representation for the calculation of vibrational energy levels
,”
J. Chem. Phys.
118
,
7174
(
2003
).
45.
S. J.
Cotton
and
W. H.
Miller
, “
Symmetrical windowing for quantum states in quasi-classical trajectory simulations
,”
J. Phys. Chem. A
117
,
7190
(
2013
).
46.
S. J.
Cotton
and
W. H.
Miller
, “
Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electronically non-adiabatic processes
,”
J. Chem. Phys.
139
,
234112
(
2013
).
47.
S. J.
Cotton
,
K.
Igumenshchev
, and
W. H.
Miller
, “
Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electron transfer
,”
J. Chem. Phys.
141
,
084104
(
2014
).
48.
S. J.
Cotton
and
W. H.
Miller
, “
Trajectory-adjusted electronic zero point energy in classical meyer-miller vibronic dynamics: Symmetrical quasiclassical application to photodissociation
,”
J. Chem. Phys.
150
,
194110
(
2019
).
49.
A. A.
Kananenka
,
C.-Y.
Hsieh
,
J.
Cao
, and
E.
Geva
, “
Nonadiabatic dynamics via the symmetrical quasi-classical method in the presence of anharmonicity
,”
J. Phys. Chem. Lett.
9
,
319
(
2018
).
50.
J. S.
Sandoval C
,
A.
Mandal
, and
P.
Huo
, “
Symmetric quasi-classical dynamics with quasi-diabatic propagation scheme
,”
J. Chem. Phys.
149
,
044115
(
2018
).
51.
R.
Liang
,
S. J.
Cotton
,
R.
Binder
,
R.
Hegger
,
I.
Burghardt
, and
W. H.
Miller
, “
The symmetrical quasi-classical approach to electronically nonadiabatic dynamics applied to ultrafast exciton migration processes in semiconducting polymers
,”
J. Chem. Phys.
149
,
044101
(
2018
).
52.
B. M.
Weight
,
A.
Mandal
, and
P.
Huo
, “
Ab initio symmetric quasi-classical approach to investigate molecular tully models
,”
J. Chem. Phys.
155
,
084106
(
2021
).
53.
Y.
Tanimura
and
R.
Kubo
, “
Time evolution of a quantum system in contact with a nearly Gaussian-Markoffian noise bath
,”
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
54.
Y.
Tanimura
, “
Stochastic liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems
,”
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
55.
Y.
Tanimura
, “
Reduced hierarchical equations of motion in real and imaginary time: Correlated initial states and thermodynamic quantities
,”
J. Chem. Phys.
141
,
044114
(
2014
).
56.
J.
Schwinger
,
Quantum Theory of Angular Momentum
(
Academic Press
,
New York
,
1965
).
57.
R. F.
Loring
, “
Mean-trajectory approximation for electronic and vibrational-electronic nonlinear spectroscopy
,”
J. Chem. Phys.
146
,
144106
(
2017
).
58.
K.
Polley
and
R. F.
Loring
, “
Two-dimensional vibronic spectra from classical trajectories
,”
J. Chem. Phys.
150
,
164114
(
2019
).
59.
K.
Polley
and
R. F.
Loring
, “
One and two dimensional vibronic spectra for an exciton dimer from classical trajectories
,”
J. Phys. Chem. B
124
,
9913
(
2020
).
60.
G.
Amati
,
J. E.
Runeson
, and
J. O.
Richardson
, “
On detailed balance in nonadiabatic dynamics: From spin spheres to equilibrium ellipsoids
,”
J. Chem. Phys.
158
,
064113
(
2023
).
61.
J. E.
Runeson
,
J. R.
Mannouch
,
G.
Amati
,
M. R.
Fiechter
, and
J. O.
Richardson
, “
Spin-mapping methods for simulating ultrafast nonadiabatic dynamics
,”
Chimia
76
,
582
(
2022
).
62.
X.
Gao
,
M. A.
Saller
,
Y.
Liu
,
A.
Kelly
,
J. O.
Richardson
, and
E.
Geva
, “
Benchmarking quasiclassical mapping Hamiltonian methods for simulating electronically nonadiabatic molecular dynamics
,”
J. Chem. Theory Comput.
16
,
2883
(
2020
).
63.
E.
Thyrhaug
,
R.
Tempelaar
,
M. J.
Alcocer
,
K.
Žídek
,
D.
Bína
,
J.
Knoester
,
T. L.
Jansen
, and
D.
Zigmantas
, “
Identification and characterization of diverse coherences in the Fenna–Matthews–Olson complex
,”
Nat. Chem.
10
,
780
(
2018
).
64.
A.
Ishizaki
and
G. R.
Fleming
, “
Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
17255
(
2009
).
65.
G.
Tao
and
W. H.
Miller
, “
Semiclassical description of electronic excitation population transfer in a model photosynthetic system
,”
J. Phys. Chem. Lett.
1
,
891
(
2010
).
66.
H. W.
Kim
,
W.-G.
Lee
, and
Y. M.
Rhee
, “
Improving long time behavior of Poisson bracket mapping equation: A mapping variable scaling approach
,”
J. Chem. Phys.
141
,
124107
(
2014
).
67.
H.-T.
Chen
and
D. R.
Reichman
, “
On the accuracy of surface hopping dynamics in condensed phase non-adiabatic problems
,”
J. Chem. Phys.
144
,
094104
(
2016
).
68.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Elsevier
,
2023
).
69.
W. H.
Miller
and
S. J.
Cotton
, “
Classical molecular dynamics simulation of electronically non-adiabatic processes
,”
Faraday Discuss.
195
,
9
(
2016
).
70.
N.
Makri
, “
The linear response approximation and its lowest order corrections: An influence functional approach
,”
J. Phys. Chem. B
103
,
2823
(
1999
).
71.
P. L.
Walters
,
T. C.
Allen
, and
N.
Makri
, “
Direct determination of discrete harmonic bath parameters from molecular dynamics simulations
,”
J. Comput. Chem.
38
,
110
(
2017
).
72.
J. E.
Runeson
and
J. O.
Richardson
, “
Spin-mapping approach for nonadiabatic molecular dynamics
,”
J. Chem. Phys.
151
,
044119
(
2019
).
73.
J. E.
Runeson
and
J. O.
Richardson
, “
Generalized spin mapping for quantum-classical dynamics
,”
J. Chem. Phys.
152
,
084110
(
2020
).
74.
S. J.
Cotton
and
W. H.
Miller
, “
A new symmetrical quasi-classical model for electronically non-adiabatic processes: Application to the case of weak non-adiabatic coupling
,”
J. Chem. Phys.
145
,
144108
(
2016
).
75.
S. J.
Cotton
and
W. H.
Miller
, “
A symmetrical quasi-classical windowing model for the molecular dynamics treatment of non-adiabatic processes involving many electronic states
,”
J. Chem. Phys.
150
,
104101
(
2019
).
76.
J.
Adolphs
and
T.
Renger
, “
How proteins trigger excitation energy transfer in the fmo complex of green sulfur bacteria
,”
Biophys. J.
91
,
2778
(
2006
).
77.
A.
Sindhu
and
A.
Jain
, “
An efficient decoherence scheme for fewest switches surface hopping method
,”
J. Chem. Phys.
158
,
154109
(
2023
).
78.
X.
Gao
,
Y.
Lai
, and
E.
Geva
, “
Simulating absorption spectra of multiexcitonic systems via quasiclassical mapping Hamiltonian methods
,”
J. Chem. Theory Comput.
16
,
6465
(
2020
).
79.
M. K.
Lee
,
P.
Huo
, and
D. F.
Coker
, “
Semiclassical path integral dynamics: Photosynthetic energy transfer with realistic environment interactions
,”
Annu. Rev. Phys. Chem.
67
,
639
(
2016
).
80.
M. A.
Saller
,
A.
Kelly
, and
J. O.
Richardson
, “
Improved population operators for multi-state nonadiabatic dynamics with the mixed quantum-classical mapping approach
,”
Faraday Discuss.
221
,
150
(
2020
).
81.
S. J.
Cotton
and
W. H.
Miller
, “
The symmetrical quasi-classical model for electronically non-adiabatic processes applied to energy transfer dynamics in site-exciton models of light-harvesting complexes
,”
J. Chem. Theory Comput.
12
,
983
(
2016
).
82.
J. R.
Mannouch
and
J. O.
Richardson
, “
A partially linearized spin-mapping approach for nonadiabatic dynamics. i. derivation of the theory
,”
J. Chem. Phys.
153
,
194109
(
2020
).
83.
J. E.
Runeson
and
J. O.
Richardson
, “
Quantum entanglement from classical trajectories
,”
Phys. Rev. Lett.
127
,
250403
(
2021
).
84.
U.
Müller
and
G.
Stock
, “
Flow of zero-point energy and exploration of phase space in classical simulations of quantum relaxation dynamics. II. Application to nonadiabatic processes
,”
J. Chem. Phys.
111
,
77
(
1999
).
85.
S. J.
Cotton
,
R.
Liang
, and
W. H.
Miller
, “
On the adiabatic representation of meyer-miller electronic-nuclear dynamics
,”
J. Chem. Phys.
147
,
064112
(
2017
).
86.
G.
Amati
,
J. R.
Mannouch
, and
J. O.
Richardson
, “
Detailed balance in mixed quantum–classical mapping approaches
,”
J. Chem. Phys.
159
,
214114
(
2023
).
87.
S.
Habershon
,
D. E.
Manolopoulos
,
T. E.
Markland
, and
T. F.
Miller
III
, “
Ring-polymer molecular dynamics: Quantum effects in chemical dynamics from classical trajectories in an extended phase space
,”
Annu. Rev. Phys. Chem.
64
,
387
(
2013
).
88.
N.
Ananth
, “
Path integrals for nonadiabatic dynamics: Multistate ring polymer molecular dynamics
,”
Annu. Rev. Phys. Chem.
73
,
299
(
2022
).
89.
P.
Shushkov
,
R.
Li
, and
J. C.
Tully
, “
Ring polymer molecular dynamics with surface hopping
,”
J. Chem. Phys.
137
,
22A549
(
2012
).
90.
F. A.
Shakib
and
P.
Huo
, “
Ring polymer surface hopping: Incorporating nuclear quantum effects into nonadiabatic molecular dynamics simulations
,”
J. Phys. Chem. Lett.
8
,
3073
(
2017
).
You do not currently have access to this content.