Spontaneous self-assembly of hard convex polyhedra is known to form orientationally disordered crystalline phases, where particle orientations do not follow the same pattern as the positional arrangement of the crystal. A distinct type of orientational phase with discrete rotational mobility has been reported in hard particle systems. In this paper, we present a new analysis method for characterizing the orientational phase of a crystal, which is based on algorithmic detection of unique orientations. Using this method, we collected complete statistics of discrete orientations along the Monte Carlo simulation trajectories and observed that particles were equally partitioned among them, with specific values of pairwise orientational differences. These features remained constant across the pressure range and did not depend on rotational mobility. The discrete mobility was characteristic of a distinct equilibrium thermodynamic phase, qualitatively different from the freely rotating plastic phase with continuous orientations. The high pressure behavior with frozen particle orientations was part of that same description and not a non-equilibrium arrested state. We introduced a precise notion of orientational order and demonstrated that the system was maximally disordered at the level of a unit cell, even though individual particles could only take a few discrete orientations. We report the existence of this phase in five polyhedral shapes and in systematically curated shape families constructed around two of them. The symmetry mismatch between the particle and the crystallographic point groups was found to be a predictive indicator for the occurrence of this phase.

1.
P.
Pieranski
, “
Colloidal crystals
,”
Contemp. Phys.
24
,
25
73
(
1983
).
2.
A. D.
Dinsmore
,
J. C.
Crocker
, and
A. G.
Yodh
, “
Self-assembly of colloidal crystals
,”
Curr. Opin. Colloid Interface Sci.
3
,
5
11
(
1998
).
3.
B.
Li
,
D.
Zhou
, and
Y.
Han
, “
Assembly and phase transitions of colloidal crystals
,”
Nat. Rev. Mater.
1
,
15011
(
2016
).
4.
N. H.
Orr
,
T.
Yanagishima
,
I. P.
Dolbnya
,
A. V.
Petukhov
, and
R. P.
Dullens
, “
Single-orientation colloidal crystals from capillary-action-induced shear
,”
J. Chem. Phys.
157
,
224903
(
2022
).
5.
M. A.
Boles
,
M.
Engel
, and
D. V.
Talapin
, “
Self-assembly of colloidal nanocrystals: From intricate structures to functional materials
,”
Chem. Rev.
116
,
11220
11289
(
2016
).
6.
C. A.
Mirkin
,
R. L.
Letsinger
,
R. C.
Mucic
, and
J. J.
Storhoff
, “
A DNA-based method for rationally assembling nanoparticles into macroscopic materials
,”
Nature
382
,
607
609
(
1996
).
7.
R. J.
Macfarlane
,
B.
Lee
,
M. R.
Jones
,
N.
Harris
,
G. C.
Schatz
, and
C. A.
Mirkin
, “
Nanoparticle superlattice engineering with dna
,”
Science
334
,
204
208
(
2011
).
8.
G. M.
Whitesides
and
M.
Boncheva
, “
Beyond molecules: Self-assembly of mesoscopic and macroscopic components
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
4769
4774
(
2002
).
9.
M. M.
Maye
,
D.
Nykypanchuk
,
D.
van der Lelie
, and
O.
Gang
, “
Dna-regulated micro- and nanoparticle assembly
,”
Small
3
,
1678
1682
(
2007
).
10.
J.
Henzie
,
M.
Grunwald
,
A.
Widmer-Cooper
,
P. L.
Geissler
, and
P.
Yang
, “
Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices
,”
Nat. Mater.
11
,
131
137
(
2012
).
11.
M. I.
Bodnarchuk
,
E. V.
Shevchenko
, and
D. V.
Talapin
, “
Structural defects in periodic and quasicrystalline binary nanocrystal superlattices
,”
J. Am. Chem. Soc.
133
,
20837
20849
(
2011
).
12.
M. P.
Boneschanscher
,
W. H.
Evers
,
J. J.
Geuchies
,
T.
Altantzis
,
B.
Goris
,
F. T.
Rabouw
,
S. A. P.
van Rossum
,
H. S. J.
van der Zant
,
L. D.
Siebbeles
,
G.
Van Tendeloo
,
I.
Swart
,
J.
Hilhorst
,
A. V.
Petukhov
,
S.
Bals
, and
D.
Vanmaekelbergh
, “
Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices
,”
Science
344
,
1377
1380
(
2014
).
13.
H.
Lin
,
S.
Lee
,
L.
Sun
,
M.
Spellings
,
M.
Engel
,
S. C.
Glotzer
, and
C. A.
Mirkin
, “
Clathrate colloidal crystals
,”
Science
355
,
931
935
(
2017
).
14.
S.
Zhou
,
J.
Li
,
J.
Lu
,
H.
Liu
,
J. Y.
Kim
,
A.
Kim
,
L.
Yao
,
C.
Liu
,
C.
Qian
,
Z. D.
Hood
,
X.
Lin
,
W.
Chen
,
T. E.
Gage
,
I.
Arslan
,
A.
Travesset
,
K.
Sun
,
N. A.
Kotov
, and
Q.
Chen
, “
Chiral assemblies of pinwheel superlattices on substrates
,”
Nature
612
,
259
265
(
2022
).
15.
J. J.
Geuchies
,
C. V.
Overbeek
,
W. H.
Evers
,
B.
Goris
,
A. D.
Backer
,
A. P.
Gantapara
,
F. T.
Rabouw
,
J.
Hilhorst
,
J. L.
Peters
,
O.
Konovalov
,
A. V.
Petukhov
,
M.
Dijkstra
,
L. D.
Siebbeles
,
S. V.
Aert
,
S.
Bals
, and
D.
Vanmaekelbergh
, “
In situ study of the formation mechanism of two-dimensional superlattices from pbse nanocrystals
,”
Nat. Mater.
15
,
1248
1254
(
2016
).
16.
E. V.
Shevchenko
,
D. V.
Talapin
,
N. A.
Kotov
,
S.
O’Brien
, and
C. B.
Murray
, “
Structural diversity in binary nanoparticle superlattices
,”
Nature
439
,
55
59
(
2006
).
17.
Y.
Zhang
,
F.
Lu
,
K. G.
Yager
,
D.
van der Lelie
, and
O.
Gang
, “
A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems
,”
Nat. Nanotechnol.
8
,
865
872
(
2013
).
18.
M. R.
Jones
,
R. J.
MacFarlane
,
B.
Lee
,
J.
Zhang
,
K. L.
Young
,
A. J.
Senesi
, and
C. A.
Mirkin
, “
DNA-nanoparticle superlattices formed from anisotropic building blocks
,”
Nat. Mater.
9
,
913
917
(
2010
).
19.
S. C.
Glotzer
and
M. J.
Solomon
, “
Anisotropy of building blocks and their assembly into complex structures
,”
Nat. Mater.
6
,
557
562
(
2007
).
20.
D. V.
Talapin
, “
Nanocrystal solids: A modular approach to materials design
,”
MRS Bull.
37
,
63
71
(
2012
).
21.
A. L.
Rogach
,
D. V.
Talapin
,
E. V.
Shevchenko
,
A.
Kornowski
,
M.
Haase
, and
H.
Weller
, “
Organization of matter on different size scales: Monodisperse nanocrystals and their superstructures
,”
Adv. Funct. Mater.
12
,
653
664
(
2002
).
22.
Z.
Tang
and
N. A.
Kotov
, “
One-dimensional assemblies of nanoparticles: Preparation, properties, and promise
,”
Adv. Mater.
17
,
951
962
(
2005
).
23.
K.
Deng
,
Z.
Luo
,
L.
Tan
, and
Z.
Quan
, “
Self-assembly of anisotropic nanoparticles into functional superstructures
,”
Chem. Soc. Rev.
49
,
6002
6038
(
2020
).
24.
D.
Samanta
,
W.
Zhou
,
S. B.
Ebrahimi
,
S. H.
Petrosko
, and
C. A.
Mirkin
, “
Programmable matter: The nanoparticle atom and dna bond
,”
Adv. Mater.
34
,
2107875
(
2022
).
25.
D. A.
Keen
and
A. L.
Goodwin
, “
The crystallography of correlated disorder
,”
Nature
521
,
303
309
(
2015
).
26.
J.
Timmermans
, “
Plastic crystals: A historical review
,”
J. Phys. Chem. Solids
18
,
1
8
(
1961
).
27.
G.
Guthrie
and
J. P.
Mccullough
, “
Some observations on phase transformations in molecular crystals
,”
J. Phys. Chem. Solids
18
,
53
61
(
1961
).
28.
P. A.
Reynolds
, “
Disorder in the crystal structures of paradichlorobenzene
,”
Mol. Phys.
29
,
519
529
(
1975
).
29.
S. A.
Harfenist
,
Z. L.
Wang
,
M. M.
Alvarez
,
I.
Vezmar
, and
R. L.
Whetten
, “
Highly oriented molecular ag nanocrystal arrays
,”
J. Phys. Chem.
100
,
13904
(
1996
).
30.
G. A.
Vdovichenko
,
A. I.
Krivchikov
,
O. A.
Korolyuk
,
J. L.
Tamarit
,
L. C.
Pardo
,
M.
Rovira-Esteva
,
F. J.
Bermejo
,
M.
Hassaine
, and
M. A.
Ramos
, “
Thermal properties of halogen-ethane glassy crystals: Effects of orientational disorder and the role of internal molecular degrees of freedom
,”
J. Chem. Phys.
143
,
084510
(
2015
).
31.
J.
Even
,
M.
Carignano
, and
C.
Katan
, “
Molecular disorder and translation/rotation coupling in the plastic crystal phase of hybrid perovskites
,”
Nanoscale
8
,
6222
6236
(
2016
).
32.
E. O.
Beake
,
M. G.
Tucker
,
M. T.
Dove
, and
A. E.
Phillips
, “
Orientational disorder in adamantane and adamantanecarboxylic acid
,”
ChemPhysChem
18
,
459
464
(
2017
).
33.
U. T.
Hochli
,
K.
Knorr
, and
A.
Loidl
, “
Orientational glasses
,”
Adv. Phys.
39
,
405
615
(
1990
).
34.
I.
Nitta
, “
On the orientational and rotational disorder in molecular crystals
,”
Z. Kristallog.
112
,
234
254
(
1959
).
35.
R. P.
Dullens
and
A. V.
Petukhov
, “
Second-type disorder in colloidal crystals
,”
Europhys. Lett.
77
,
58003
(
2007
).
36.
J. M.
Meijer
,
A.
Pal
,
S.
Ouhajji
,
H. N.
Lekkerkerker
,
A. P.
Philipse
, and
A. V.
Petukhov
, “
Observation of solid-solid transitions in 3D crystals of colloidal superballs
,”
Nat. Commun.
8
,
14352
(
2017
).
37.
K. C.
Elbert
,
W.
Zygmunt
,
T.
Vo
,
C. M.
Vara
,
D. J.
Rosen
,
N. M.
Krook
,
S. C.
Glotzer
, and
C. B.
Murray
, “
Anisotropic nanocrystal shape and ligand design for co-assembly
,”
Sci. Adv.
7
(
23
),
abf9402
(
2021
).
38.
A. S.
Abbas
,
E.
Vargo
,
V.
Jamali
,
P.
Ercius
,
P. F.
Pieters
,
R. M.
Brinn
,
A.
Ben-Moshe
,
M. G.
Cho
,
T.
Xu
, and
A. P.
Alivisatos
, “
Observation of an orientational glass in a superlattice of elliptically-faceted cdse nanocrystals
,”
ACS Nano
16
,
9339
9347
(
2022
).
39.
X.
Hu
,
F.
Jia
, and
J.
Gong
, “
One-dimensional and three-dimensional long-range orientated superstructures of Pbse nanocrystals
,”
Chem. Commun.
59
,
11421
(
2023
).
40.
D.
Frenkel
, “
Entropy-driven phase transitions
,”
Physica A
263
,
26
38
(
1999
).
41.
B. S.
John
,
C.
Juhlin
, and
F. A.
Escobedo
, “
Phase behavior of colloidal hard perfect tetragonal parallelepipeds
,”
J. Chem. Phys.
128
,
044909
(
2008
).
42.
S.
Torquato
and
Y.
Jiao
, “
Dense packings of the platonic and archimedean solids
,”
Nature
460
,
876
879
(
2009
).
43.
W. L.
Miller
,
B.
Bozorgui
, and
A.
Cacciuto
, “
Crystallization of hard aspherical particles
,”
J. Chem. Phys.
132
,
134901
(
2010
).
44.
R. D.
Batten
,
F. H.
Stillinger
, and
S.
Torquato
, “
Phase behavior of colloidal superballs: Shape interpolation from spheres to cubes
,”
Phys. Rev. E
81
,
061105
(
2010
).
45.
R.
Ni
,
A. P.
Gantapara
,
J.
de Graaf
,
R.
van Roij
, and
M.
Dijkstra
, “
Phase diagram of colloidal hard superballs: From cubes via spheres to octahedra
,”
Soft Matter
8
,
8826
8834
(
2012
).
46.
U.
Agarwal
and
F. A.
Escobedo
, “
Mesophase behaviour of polyhedral particles
,”
Nat. Mater.
10
,
230
235
(
2011
).
47.
P. F.
Damasceno
,
M.
Engel
, and
S. C.
Glotzer
, “
Predictive self-assembly of polyhedra into complex structures
,”
Science
337
,
453
457
(
2012
).
48.
A. P.
Gantapara
,
J. D.
Graaf
,
R. V.
Roij
, and
M.
Dijkstra
, “
Phase diagram and structural diversity of a family of truncated cubes: Degenerate close-packed structures and vacancy-rich states
,”
Phys. Rev. Lett.
111
,
015501
(
2013
).
49.
A. P.
Gantapara
,
J.
de Graaf
,
R.
van Roij
, and
M.
Dijkstra
, “
Phase behavior of a family of truncated hard cubes
,”
J. Chem. Phys.
142
,
054904
(
2015
).
50.
C.
Knorowski
and
A.
Travesset
, “
Self-assembly and crystallization of hairy (f-Star) and DNA-grafted nanocubes
,”
J. Am. Chem. Soc.
136
,
653
659
(
2014
).
51.
Z.
Fan
and
M.
Grunwald
, “
Orientational order in self-assembled nanocrystal superlattices
,”
J. Am. Chem. Soc.
141
,
1980
1988
(
2019
).
52.
M. N.
O’Brien
,
M.
Girard
,
H. X.
Lin
,
J. A.
Millan
,
M.
Olvera de la Cruz
,
B.
Lee
, and
C. A.
Mirkin
, “
Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
10485
10490
(
2016
).
53.
J. C.
Ondry
,
L. B.
Frechette
,
P. L.
Geissler
, and
A. P.
Alivisatos
, “
Trade-offs between translational and orientational order in 2D superlattices of polygonal nanocrystals with differing edge count
,”
Nano Lett.
22
,
389
395
(
2022
).
54.
W.
Shen
,
J.
Antonaglia
,
J. A.
Anderson
,
M.
Engel
,
G.
van Anders
, and
S. C.
Glotzer
, “
Symmetries in hard polygon systems determine plastic colloidal crystal mesophases in two dimensions
,”
Soft Matter
15
,
2571
2579
(
2019
).
55.
A. S.
Karas
,
J.
Dshemuchadse
,
G. V.
Anders
, and
S. C.
Glotzer
, “
Phase behavior and design rules for plastic colloidal crystals of hard polyhedra Via consideration of directional entropic forces
,”
Soft Matter
15
,
5380
5389
(
2019
).
56.
S.
Lee
,
T.
Vo
, and
S. C.
Glotzer
, “
Entropy compartmentalization stabilizes open host–guest colloidal clathrates
,”
Nat. Chem.
15
,
905
912
(
2023
).
57.
D. W. N.
Edington
,
P. R. L.
Markwick
,
W. C. K.
Poon
,
H.
Vass
, and
J.
Crain
, “
Spectroscopic probe of free volume changes at freezing: Raman scattering from CS 2 in cyclohexane
,”
Phys. Rev. Lett.
82
,
3827
3830
(
1999
).
58.
B.
Liu
,
T. H.
Besseling
,
M.
Hermes
,
A. F.
Demirörs
,
A.
Imhof
, and
A.
van Blaaderen
, “
Switching plastic crystals of colloidal rods with electric fields
,”
Nat. Commun.
5
,
3092
(
2014
).
59.
J.
Harada
, “
Plastic/ferroelectric molecular crystals: Ferroelectric performance in bulk polycrystalline forms
,”
APL Mater.
9
,
020901
(
2021
).
60.
A. K.
Sharma
and
F. A.
Escobedo
, “
Diffusionless rotator–crystal transitions in colloidal truncated cubes
,”
J. Chem. Phys.
161
,
034509
(
2024
).
61.
J. F.
Berret
,
J. L.
Sauvajol
, and
G.
Cohen-Solal
, “
Orientational Glass Transition in (KBr)1-x(KCN)x Quadrupolar Glasses: A Raman Scattering Study
,”
Europhys. Lett.
13
,
273
278
(
1990
).
62.
D. G.
Bounds
,
M. L.
Klein
,
I. R.
McDonald
, and
Y.
Ozaki
, “
Static disorder in the mixed crystals (KCN)x(KBr)1−x and its relation to dynamical properties
,”
Mol. Phys.
47
,
629
636
(
1982
).
63.
A.
Loidl
, “
Orientational glasses
,”
Annu. Rev. Phys. Chem.
40
,
29
60
(
1989
).
64.
S. L.
Chaplot
,
P. S.
Schiebel
, and
L.
Pintsschovius
, “
Molecular dynamics simulations of preferred orientations in the high temperature phase of C60
,”
Fullerene Sci. Technol.
9
,
363
374
(
2001
).
65.
J. A.
Anderson
,
M.
Eric Irrgang
, and
S. C.
Glotzer
, “
Scalable metropolis Monte Carlo for simulation of hard shapes
,”
Comput. Phys. Commun.
204
,
21
30
(
2016
).
66.
V.
Ramasubramani
,
B. D.
Dice
,
E. S.
Harper
,
M. P.
Spellings
,
J. A.
Anderson
, and
S. C.
Glotzer
, “
freud: A software suite for high throughput analysis of particle simulation data
,”
Comput. Phys. Commun.
254
,
107275
(
2020
).
67.
See https://github.com/glotzerlab/rowan for calculations involving quaternions.
68.
A.
Haji-Akbari
and
S. C.
Glotzer
, “
Strong orientational coordinates and orientational order parameters for symmetric objects
,”
J. Phys. A: Math. Theor.
48
,
485201
(
2015
).
69.
J.
Nissinen
,
K.
Liu
,
R. J.
Slager
,
K.
Wu
, and
J.
Zaanen
, “
Classification of point-group-symmetric orientational ordering tensors
,”
Phys. Rev. E
94
,
022701
(
2016
).
70.
J. L.
Aragones
,
M. M.
Conde
,
E. G.
Noya
, and
C.
Vega
, “
The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: The appearance of a plastic crystal phase
,”
Phys. Chem. Chem. Phys.
11
,
543
555
(
2009
).
71.
C.
Vega
,
E. P.
Paras
, and
P. A.
Monson
, “
Solid-fluid equilibria for hard dumbbells via Monte Carlo simulation
,”
J. Chem. Phys.
96
,
9060
9072
(
1992
).
72.
E. G.
Teich
,
G.
van Anders
, and
S. C.
Glotzer
, “
Identity crisis in alchemical space drives the entropic colloidal glass transition
,”
Nat. Commun.
10
,
64
(
2019
).
73.
T.
Vo
and
S. C.
Glotzer
, “
A theory of entropic bonding
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2116414119
(
2022
).
74.
E. S.
Harper
,
G.
van Anders
, and
S. C.
Glotzer
, “
The entropic bond in colloidal crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
16703
16710
(
2019
).
75.
G.
van Anders
,
D.
Klotsa
,
N. K.
Ahmed
,
M.
Engel
, and
S. C.
Glotzer
, “
Understanding shape entropy through local dense packing
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
E4812
E4821
(
2014
).
76.
D.
Frenkel
and
A. J.
Ladd
, “
New Monte Carlo method to compute the free energy of arbitrary solids. application to the fcc and hcp phases of hard spheres
,”
J. Chem. Phys.
81
,
3188
3193
(
1984
).
77.
C.
Vega
and
E. G.
Noya
, “
Revisiting the Frenkel-Ladd method to compute the free energy of solids: The Einstein molecule approach
,”
J. Chem. Phys.
127
,
154113
(
2007
).
78.
M.
Marechal
and
M.
Dijkstra
, “
Stability of orientationally disordered crystal structures of colloidal hard dumbbells
,”
Phys. Rev. E
77
,
061405
061410
(
2008
).
79.
A.
Haji-Akbari
,
M.
Engel
, and
S. C.
Glotzer
, “
Phase diagram of hard tetrahedra
,”
J. Chem. Phys.
135
,
194101
(
2011
).
80.
L.
Pauling
, “
The structure and entropy of ice and of other crystals with some randomness of atomic arrangement
,”
J. Am. Chem. Soc.
57
,
2680
2684
(
1935
).
81.
D.
Chaney
,
A.
Castellano
,
A.
Bosak
,
J.
Bouchet
,
F.
Bottin
,
B.
Dorado
,
L.
Paolasini
,
S.
Rennie
,
C.
Bell
,
R.
Springell
, and
G. H.
Lander
, “
Tuneable correlated disorder in alloys
,”
Phys. Rev. Mater.
5
,
035004
(
2021
).
82.
E. G.
Meekel
and
A. L.
Goodwin
, “
Correlated disorder in metal-organic frameworks
,”
CrystEngComm
23
,
2915
2922
(
2021
).
83.
A.
Simonov
and
A. L.
Goodwin
, “
Designing disorder into crystalline materials
,”
Nat. Rev. Chem
4
,
657
673
(
2020
).
84.
J. D.
Bernal
and
R. H.
Fowler
, “
A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions
,”
J. Chem. Phys.
1
,
515
548
(
1933
).
85.
L.
Onsager
, “
The effects of shape on the interaction of colloidal particles
,”
Ann. N. Y. Acad. Sci.
51
,
627
659
(
1949
).
You do not currently have access to this content.