The calculation of the interfacial free energy between two thermodynamic phases is crucial across various fields, including materials science, chemistry, and condensed matter physics. In this study, we apply an existing thermodynamic approach, the Gibbs–Cahn integration method, to determine the interfacial free energy under different coexistence conditions, relying on data from a single-state calculation at specified pressure and temperature. This approach developed by Laird et al. [J. Chem. Phys. 131, 114110 (2009)] reduces the computational demand and enhances efficiency compared to methods that require separate measurements at each thermodynamic state. The integration scheme computes the excess interfacial free energy using unbiased constant volume, temperature, and number of particle simulations (NVT), where the two phases coexist, to provide input for the calculations. We apply this method to the Lennard-Jones and mW water models for liquid–solid interfaces, as well as the Lennard-Jones and TIP4P/2005 models for liquid–vapor interfaces. Our results demonstrate the accuracy and effectiveness of this integration route for estimating the interfacial free energy along a coexistence line.

1.
Y.
Zhang
,
E.
Anim-Danso
,
S.
Bekele
, and
A.
Dhinojwala
, “
Effect of surface energy on freezing temperature of water
,”
ACS Appl. Mater. Interfaces
8
(
27
),
17583
17590
(
2016
).
2.
J. R.
Espinosa
,
A.
Zaragoza
,
P.
Rosales-Pelaez
,
C.
Navarro
,
C.
Valeriani
,
C.
Vega
, and
E.
Sanz
, “
Interfacial free energy as the key to the pressure-induced deceleration of ice nucleation
,”
Phys. Rev. Lett.
117
(
13
),
135702
(
2016
).
3.
I.
Sanchez-Burgos
,
E.
Sanz
,
C.
Vega
, and
J. R.
Espinosa
, “
Fcc vs. hcp competition in colloidal hard-sphere nucleation: On their relative stability, interfacial free energy and nucleation rate
,”
Phys. Chem. Chem. Phys.
23
(
35
),
19611
19626
(
2021
).
4.
C.
Hoose
and
O.
Möhler
, “
Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments
,”
Atmos. Chem. Phys.
12
(
20
),
9817
9854
(
2012
).
5.
J. C.
Rasaiah
,
S.
Garde
, and
G.
Hummer
, “
Water in nonpolar confinement: From nanotubes to proteins and beyond
,”
Annu. Rev. Phys. Chem.
59
,
713
740
(
2008
).
6.
M.
Asta
,
C.
Beckermann
,
A.
Karma
,
W.
Kurz
,
R.
Napolitano
,
M.
Plapp
,
G.
Purdy
,
M.
Rappaz
, and
R.
Trivedi
, “
Solidification microstructures and solid-state parallels: Recent developments, future directions
,”
Acta Mater.
57
(
4
),
941
971
(
2009
).
7.
A.
Cochard
,
M.
Garcia-Jove Navarro
,
L.
Piroska
,
S.
Kashida
,
M.
Kress
,
D.
Weil
, and
Z.
Gueroui
, “
RNA at the surface of phase-separated condensates impacts their size and number
,”
Biophys. J.
121
(
9
),
1675
1690
(
2022
).
8.
I.
Sanchez-Burgos
,
J. A.
Joseph
,
R.
Collepardo-Guevara
, and
J. R.
Espinosa
, “
Size conservation emerges spontaneously in biomolecular condensates formed by scaffolds and surfactant clients
,”
Sci. Rep.
11
(
1
),
15241
15310
(
2021
).
9.
R.
Bahadur
,
L. M.
Russell
, and
S.
Alavi
, “
Surface tensions in NaCl–water–air systems from MD simulations
,”
J. Phys. Chem. B
111
(
41
),
11989
11996
(
2007
).
10.
R. L.
Davidchack
and
B. B.
Laird
, “
Direct calculation of the crystal–melt interfacial free energies for continuous potentials: Application to the Lennard-Jones system
,”
J. Chem. Phys.
118
(
16
),
7651
7657
(
2003
).
11.
R. L.
Davidchack
and
B. B.
Laird
, “
Direct calculation of the hard-sphere crystal/melt interfacial free energy
,”
Phys. Rev. Lett.
85
(
22
),
4751
(
2000
).
12.
M.
Ambler
,
B.
Vorselaars
,
M. P.
Allen
, and
D.
Quigley
, “
Solid–liquid interfacial free energy of ice Ih, ice Ic, and ice 0 within a mono-atomic model of water via the capillary wave method
,”
J. Chem. Phys.
146
(
7
),
074701
(
2017
).
13.
J.
Espinosa
,
C.
Vega
, and
E.
Sanz
, “
The mold integration method for the calculation of the crystal-fluid interfacial free energy from simulations
,”
J. Chem. Phys.
141
(
13
),
134709
(
2014
).
14.
J. R.
Espinosa
,
C.
Vega
, and
E.
Sanz
, “
Ice–water interfacial free energy for the TIP4P, TIP4P/2005, TIP4P/Ice, and mW models as obtained from the mold integration technique
,”
J. Phys. Chem. C
120
(
15
),
8068
8075
(
2016
).
15.
B.
Cheng
,
G. A.
Tribello
, and
M.
Ceriotti
, “
Solid–liquid interfacial free energy out of equilibrium
,”
Phys. Rev. B
92
(
18
),
180102
(
2015
).
16.
J.
Hoyt
,
M.
Asta
, and
A.
Karma
, “
Method for computing the anisotropy of the solid–liquid interfacial free energy
,”
Phys. Rev. Lett.
86
(
24
),
5530
(
2001
).
17.
L.
Fernández
,
V.
Martin-Mayor
,
B.
Seoane
, and
P.
Verrocchio
, “
Equilibrium fluid-solid coexistence of hard spheres
,”
Phys. Rev. Lett.
108
(
16
),
165701
(
2012
).
18.
J. W.
Gibbs
,
Collected Works Longmans
(
Green and Co.
,
New York
,
1928
).
19.
W. C.
Johnson
and
J. M.
Blakely
,
Interfacial Segregation: Papers Presented at a Seminar of The Materials Science Division of The American Society For Metals, October 22 and 23, 1977
(
American Society of Civil Engineers
,
1979
).
20.
D.
Turnbull
, “
Formation of crystal nuclei in liquid metals
,”
J. Appl. Phys.
21
(
10
),
1022
1028
(
1950
).
21.
M.
Volmer
and
A.
Weber
, “
Keimbildung in übersättigten gebilden
,”
Z. Phys. Chem.
119U
(
1
),
277
301
(
1926
).
22.
R.
Becker
and
W.
Döring
, “
Kinetische behandlung der keimbildung in übersättigten dämpfen
,”
Ann. Phys.
416
(
8
),
719
752
(
1935
).
23.
B.
N Hale
, “
Monte Carlo calculations of effective surface tension for small clusters
,”
Aust. J. Phys.
49
(
2
),
425
434
(
1996
).
24.
P. M.
Piaggi
,
J.
Weis
,
A. Z.
Panagiotopoulos
,
P. G.
Debenedetti
, and
R.
Car
, “
Homogeneous ice nucleation in an ab initio machine-learning model of water
,”
Proc. Natl. Acad. Sci. U. S. A.
119
(
33
),
e2207294119
(
2022
).
25.
I.
Sanchez-Burgos
,
A. R.
Tejedor
,
C.
Vega
,
M. M.
Conde
,
E.
Sanz
,
J.
Ramirez
, and
J. R.
Espinosa
, “
Homogeneous ice nucleation rates for mW and TIP4P/ICE models through lattice mold calculations
,”
J. Chem. Phys.
157
(
9
),
094503
(
2022
).
26.
J. R.
Espinosa
,
C.
Vega
,
C.
Valeriani
, and
E.
Sanz
, “
Seeding approach to crystal nucleation
,”
J. Chem. Phys.
144
(
3
),
034501
(
2016
).
27.
J.
Espinosa
,
C.
Navarro
,
E.
Sanz
,
C.
Valeriani
, and
C.
Vega
, “
On the time required to freeze water
,”
J. Chem. Phys.
145
(
21
),
211922
(
2016
).
28.
C.
P Lamas
,
J.
R Espinosa
,
M.
M Conde
,
J.
Ramírez
,
P.
Montero de Hijes
,
E.
G Noya
,
C.
Vega
, and
E.
Sanz
, “
Homogeneous nucleation of NaCl in supersaturated solutions
,”
Phys. Chem. Chem. Phys.
23
(
47
),
26843
26852
(
2021
).
29.
A.
Garaizar
,
T.
Higginbotham
,
I.
Sanchez-Burgos
,
A. R.
Tejedor
,
E.
Sanz
, and
J. R.
Espinosa
, “
Alternating one-phase and two-phase crystallization mechanisms in octahedral patchy colloids
,”
J. Chem. Phys.
157
(
13
),
134501
(
2022
).
30.
U. O. M.
Vázquez
,
W.
Shinoda
,
P. B.
Moore
,
C.-c.
Chiu
, and
S. O.
Nielsen
, “
Calculating the surface tension between a flat solid and a liquid: A theoretical and computer simulation study of three topologically different methods
,”
J. Math. Chem.
45
,
161
174
(
2009
).
31.
T.
Young
, “
III. An essay on the cohesion of fluids
,”
Philos. Trans. R. Soc. London
95
(
95
),
65
87
(
1805
).
32.
D. Y.
Kwok
and
A. W.
Neumann
, “
Contact angle measurement and contact angle interpretation
,”
Adv. Colloid Interface Sci.
81
(
3
),
167
249
(
1999
).
33.
H.
Cha
,
J.
Ma
,
Y. S.
Kim
,
L.
Li
,
L.
Sun
,
J.
Tong
, and
N.
Miljkovic
, “
In situ droplet microgoniometry using optical microscopy
,”
Acs Nano
13
(
11
),
13343
13353
(
2019
).
34.
H.-S.
Na
,
S.
Arnold
, and
A. S.
Myerson
, “
Cluster formation in highly supersaturated solution droplets
,”
J. Cryst. Growth
139
(
1–2
),
104
112
(
1994
).
35.
H. R.
Pruppacher
, “
A new look at homogeneous ice nucleation in supercooled water drops
,”
J. Atmos. Sci.
52
(
11
),
1924
1933
(
1995
).
36.
L.
Ickes
,
A.
Welti
,
C.
Hoose
, and
U.
Lohmann
, “
Classical nucleation theory of homogeneous freezing of water: Thermodynamic and kinetic parameters
,”
Phys. Chem. Chem. Phys.
17
(
8
),
5514
5537
(
2015
).
37.
J. Q.
Broughton
and
G. H.
Gilmer
, “
Molecular dynamics investigation of the crystal–fluid interface. VI. Excess surface free energies of crystal–liquid systems
,”
J. Chem. Phys.
84
(
10
),
5759
5768
(
1986
).
38.
S.
Angioletti-Uberti
,
M.
Ceriotti
,
P. D.
Lee
, and
M. W.
Finnis
, “
Solid–liquid interface free energy through metadynamics simulations
,”
Phys. Rev. B
81
(
12
),
125416
(
2010
).
39.
A. R.
Tejedor
,
I.
Sanchez-Burgos
,
E.
Sanz
,
C.
Vega
,
F. J.
Blas
,
R. L.
Davidchack
,
N. D.
Pasquale
,
J.
Ramirez
, and
J. R.
Espinosa
, “
Mold: A LAMMPS package to compute interfacial freeenergies and nucleation rates
,”
J. Open Source Softw.
9
(
95
),
6083
(
2024
).
40.
J. W.
Cahn
,
W.
Johnson
, and
J.
Blakely
, “
Interfacial segregation
,” in
Proceedings of 1977 ASM Seminar (ASM, Metal Park, OH)
(
American Society for Metals
,
1979
), p.
1
.
41.
R.
Benjamin
and
J.
Horbach
, “
Crystal–liquid interfacial free energy via thermodynamic integration
,”
J. Chem. Phys.
141
(
4
),
044715
(
2014
).
42.
M.
Bültmann
and
T.
Schilling
, “
Computation of the solid–liquid interfacial free energy in hard spheres by means of thermodynamic integration
,”
Phys. Rev. E
102
(
4
),
042123
(
2020
).
43.
F.
Leroy
,
D. J.
Dos Santos
, and
F.
Müller-Plathe
, “
Interfacial excess free energies of solid–liquid interfaces by molecular dynamics simulation and thermodynamic integration
,”
Macromol. Rapid Commun.
30
(
9–10
),
864
870
(
2009
).
44.
R. L.
Davidchack
, “
Hard spheres revisited: Accurate calculation of the solid–liquid interfacial free energy
,”
J. Chem. Phys.
133
(
23
),
234701
(
2010
).
45.
M.
Asta
,
J.
Hoyt
, and
A.
Karma
, “
Calculation of alloy solid–liquid interfacial free energies from atomic-scale simulations
,”
Phys. Rev. B
66
(
10
),
100101
(
2002
).
46.
I.
Sanchez-Burgos
and
J. R.
Espinosa
, “
Direct calculation of the interfacial free energy between NaCl crystal and its aqueous solution at the solubility limit
,”
Phys. Rev. Lett.
130
(
11
),
118001
(
2023
).
47.
B. B.
Laird
,
R. L.
Davidchack
,
Y.
Yang
, and
M.
Asta
, “
Determination of the solid–liquid interfacial free energy along a coexistence line by Gibbs–Cahn integration
,”
J. Chem. Phys.
131
(
11
),
114110
(
2009
).
48.
B. B.
Laird
and
R. L.
Davidchack
, “
Calculation of the interfacial free energy of a fluid at a static wall by Gibbs–Cahn integration
,”
J. Chem. Phys.
132
(
20
),
204101
(
2010
).
49.
J. R.
Espinosa
,
C.
Vega
,
C.
Valeriani
, and
E.
Sanz
, “
The crystal-fluid interfacial free energy and nucleation rate of NaCl from different simulation methods
,”
J. Chem. Phys.
142
(
19
),
194709
(
2015
).
50.
Y.
Mu
and
X.
Song
, “
Crystal-melt interfacial free energies of hard-dumbbell systems
,”
Phys. Rev. E
74
(
3
),
031611
(
2006
).
51.
J.
Liu
,
R.
Davidchack
, and
H.
Dong
, “
Molecular dynamics calculation of solid–liquid interfacial free energy and its anisotropy during iron solidification
,”
Comput. Mater. Sci.
74
,
92
100
(
2013
).
52.
A. R.
Nair
and
S. P.
Sathian
, “
A molecular dynamics study to determine the solid–liquid interfacial tension using test area simulation method (TASM)
,”
J. Chem. Phys.
137
(
8
),
084702
(
2012
).
53.
T.
Frolov
and
Y.
Mishin
, “
Solid–liquid interface free energy in binary systems: Theory and atomistic calculations for the (110) Cu–Ag interface
,”
J. Chem. Phys.
131
(
5
),
054702
(
2009
).
54.
T.
Frolov
and
Y.
Mishin
, “
Temperature dependence of the surface free energy and surface stress: An atomistic calculation for Cu(110)
,”
Phys. Rev. B
79
(
4
),
045430
(
2009
).
55.
H.
von Helmholtz
,
Die Thermodynamik chemischer Vorgänge
(
Royal Prussian Academy of Sciences
,
1882
).
56.
J. W.
Cahn
,
Thermodynamics of Solid and Fluid Surfaces
,
Interfacial Segregation
(
American Society for Metals
,
1978
), Vol.
2
, pp.
3
23
.
57.
R. F.
Sekerka
,
Thermal Physics: Thermodynamics and Statistical Mechanics for Scientists and Engineers
(
Elsevier
,
2015
).
58.
J. G.
Kirkwood
and
F. P.
Buff
, “
The statistical mechanical theory of surface tension
,”
J. Chem. Phys.
17
(
3
),
338
343
(
1949
).
59.
J.
Alejandre
,
D. J.
Tildesley
, and
G. A.
Chapela
, “
Molecular dynamics simulation of the orthobaric densities and surface tension of water
,”
J. Chem. Phys.
102
(
11
),
4574
4583
(
1995
).
60.
E.
de Miguel
and
G.
Jackson
, “
The nature of the calculation of the pressure in molecular simulations of continuous models from volume perturbations
,”
J. Chem. Phys.
125
(
16
),
164109
(
2006
).
61.
A. J.
Ladd
and
L. V.
Woodcock
, “
Triple-point coexistence properties of the Lennard-Jones system
,”
Chem. Phys. Lett.
51
,
155
159
(
1977
).
62.
N.
Di Pasquale
and
R. L.
Davidchack
, “
Shuttleworth equation: A molecular simulations perspective
,”
J. Chem. Phys.
153
(
15
),
154705
(
2020
).
63.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
(
23
),
234505
(
2005
).
64.
V.
Molinero
and
E. B.
Moore
, “
Water modeled as an intermediate element between carbon and silicon
,”
J. Phys. Chem. B
113
(
13
),
4008
4016
(
2009
).
65.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
66.
H.
Bekker
,
H.
Berendsen
,
E.
Dijkstra
,
S.
Achterop
,
R.
Vondrumen
,
D.
Vanderspoel
,
A.
Sijbers
,
H.
Keegstra
, and
M.
Renardus
, “
Gromacs: A parallel computer for molecular-dynamics simulations
,” in
4th International Conference on Computational Physics (PC 92)
(
World Scientific Publishing
,
1993
), pp.
252
256
.
67.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
(
1
),
511
519
(
1984
).
68.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
69.
W. G.
Hoover
, “
Constant-pressure equations of motion
,”
Phys. Rev. A
34
(
3
),
2499
(
1986
).
70.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
(
1
),
014101
(
2007
).
71.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
(
12
),
7182
7190
(
1981
).
72.
R. W.
Hockney
,
S.
Goel
, and
J.
Eastwood
, “
Quiet high-resolution computer models of a plasma
,”
J. Comput. Phys.
14
(
2
),
148
158
(
1974
).
73.
C.
P Lamas
,
C.
Vega
,
E.
G Noya
, and
E.
Sanz
, “
The water cavitation line as predicted by the TIP4P/2005 model
,”
J. Chem. Phys.
158
(
12
),
124504
(
2023
).
74.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods
,”
J. Chem. Phys.
99
(
10
),
10089
(
1993
).
75.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
(
19
),
8577
8593
(
1995
).
76.
B.
Hess
,
H.
Bekker
,
H. J.
Berendsen
, and
J. G.
Fraaije
, “
LINCS: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
(
12
),
1463
1472
(
1997
).
77.
V. G.
Baidakov
,
S. P.
Protsenko
, and
A. O.
Tipeev
, “
Surface free energy of the crystal–liquid interface on the metastable extension of the melting curve
,”
JETP Lett.
98
,
801
804
(
2014
).
78.
F.
Hrahsheh
,
I.
Jum’h
, and
G.
Wilemski
, “
Second inflection point of supercooled water surface tension induced by hydrogen bonds: A molecular-dynamics study
,”
J. Chem. Phys.
160
(
11
),
114504
(
2024
).
79.
C.
Vega
and
E.
de Miguel
, “
Surface tension of the most popular models of water by using the test-area simulation method
,”
J. Chem. Phys.
126
(
15
),
154707
(
2007
).
80.
X.
Wang
,
K.
Binder
,
C.
Chen
,
T.
Koop
,
U.
Pöschl
,
H.
Su
, and
Y.
Cheng
, “
Second inflection point of water surface tension in the deeply supercooled regime revealed by entropy anomaly and surface structure using molecular dynamics simulations
,”
Phys. Chem. Chem. Phys.
21
(
6
),
3360
3369
(
2019
).
81.
A.
Gorfer
,
C.
Dellago
, and
M.
Sega
, “
High-density liquid (HDL) adsorption at the supercooled water/vapor interface and its possible relation to the second surface tension inflection point
,”
J. Chem. Phys.
158
(
5
),
054503
(
2023
).
82.
D.
Frenkel
, “
Simulations: The dark side
,”
Eur. Phys. J. Plus
128
,
10
21
(
2013
).
83.
P.
Montero de Hijes
,
J.
R Espinosa
,
C.
Vega
, and
C.
Dellago
, “
Minimum in the pressure dependence of the interfacial free energy between ice Ih and water
,”
J. Chem. Phys.
158
(
12
),
124503
(
2023
).
84.
X.-M.
Bai
and
M.
Li
, “
Calculation of solid–liquid interfacial free energy: A classical nucleation theory based approach
,”
J. Chem. Phys.
124
(
12
),
124707
(
2006
).
85.
A. S.
Skapski
, “
A theory of surface tension of solids—I application to metals
,”
Acta Metall.
4
(
6
),
576
582
(
1956
).
86.
S.
Lippmann
,
C.
Simon
,
S.
Zechel
,
M.
Seyring
,
U.
Schubert
,
G.
Wilde
, and
M.
Rettenmayr
, “
Determining solid/liquid interfacial energies in Al–Cu by curvature controlled melting point depression
,”
Acta Mater.
147
,
113
121
(
2018
).
87.
M.
Gündüz
and
J.
Hunt
, “
The measurement of solid–liquid surface energies in the Al–Cu, Al–Si and Pb–Sn systems
,”
Acta Metall.
33
(
9
),
1651
1672
(
1985
).
88.
S.
Wilson
,
K.
Gunawardana
, and
M.
Mendelev
, “
Solid–liquid interface free energies of pure bcc metals and B2 phases
,”
J. Chem. Phys.
142
(
13
),
134705
(
2015
).
You do not currently have access to this content.