Up to 17 GPa, the crystalline phases of N2 are characterized by pronounced orientational disorder, whereas the higher-pressure phases of molecular N2 are ordered. This raises the question about long-term relaxation of orientational disorder within the low- to intermediate-pressure regime. Here, this question is addressed by comparing synthetic with natural, chemically pure, solid N2 that resides as inclusions in diamonds at 300 K for about 108 years at pressures up to 11 GPa. It is shown that disorder prevails at 8.7 GPa, 300 K, where both synthetic and natural N2 assume the same structure. However, at 10.8 GPa, natural solid N2 exhibits monoclinic distortion and partial orientational ordering of the molecules, both of which are not observed in synthetic material. This difference is interpreted as the result of long-term structural relaxation. The ordering mechanism is examined and placed into the context of the δ- to ε-N2 transition. We present explanations for the absence of complete ordering of δ-N2.

1.
D.
Schiferl
,
D. T.
Cromer
,
R. R.
Ryan
,
A. C.
Larson
,
R.
le Sar
, and
R. L.
Mills
,
Acta Crystallogr., Sect. C
39
,
1151
1153
(
1983
).
2.
D. T.
Cromer
,
R. L.
Mills
,
D.
Schiferl
, and
L. A.
Schwalbe
,
Acta Crystallogr., Sect. B
37
(
1
),
8
11
(
1981
).
3.
R. L.
Mills
,
B.
Olinger
, and
D. T.
Cromer
,
J. Chem. Phys.
84
(
5
),
2837
2845
(
1986
).
4.
H.
Olijnik
,
J. Chem. Phys.
93
,
8968
8972
(
1990
).
5.
M. I. M.
Scheerboom
and
J. A.
Schouten
,
Phys. Rev. Lett.
71
,
2252
(
1993
).
6.
G. W.
Stinton
et al,
J. Chem. Phys.
131
,
104511
(
2009
).
7.
R.
Bini
,
L.
Ulivi
,
J.
Kreutz
, and
H. J.
Jodl
,
J. Chem. Phys.
112
,
8522
8529
(
2000
).
8.
E.
Gregoryanz
,
A. F.
Goncharov
,
C.
Sanloup
,
M.
Somayazulu
,
H.-k.
Mao
, and
R. J.
Hemley
,
J. Chem. Phys.
126
,
184505
(
2007
).
9.
R.
Turnbull
,
M.
Hanfland
,
J.
Binns
et al,
Nat. Commun.
9
,
4717
(
2018
).
10.
D.
Laniel
,
F.
Trybel
,
A.
Aslandukov
et al,
Nat. Commun.
14
,
6207
(
2023
).
11.
M. I.
Eremets
,
R. J.
Hemley
,
H.-k.
Mao
, and
E.
Gregoryanz
,
Nature
411
,
170
174
(
2001
).
12.
M. I.
Eremets
et al,
Nat. Mater.
3
,
558
563
(
2004
).
13.
O.
Navon
,
R.
Wirth
,
C.
Schmidt
,
B. M.
Jablon
,
A.
Schreiber
, and
S.
Emmanuel
,
Earth Planet. Sci. Lett.
464
,
237
247
(
2017
).
14.
O.
Navon
,
T.
Stachel
,
R. A.
Stern
, and
J. W.
Harris
,
Mineral. Petrol.
112
(
S1
),
301
310
(
2018
).
15.
T.
Gu
,
H.
Ohfuji
, and
W.
Wang
,
Am. Mineral.
104
,
652
658
(
2019
).
16.
O.
Navon
,
Y.
Kempe
,
S.
Remennik
,
O.
Tschauner
, and
Y.
Weiss
, in
12th International Kimberlite Conference (Extended Abstracts): 30 Years of Diamonds
, Yellowknife, NT, Canada, 8–12 July 2024.
17.
I.
Cabral-Neto
,
E.
Ruberti
,
D. G.
Pearson
,
Y.
Luo
,
R. G.
Azzone
,
F. V.
Silveira
, and
V. V.
Almeida
,
Mineral. Petrol.
118
,
1
(
2024
).
18.
R.
Miyawaki
,
F.
Hatert
,
M.
Pasero
, and
S. J.
Mills
,
Eur. J. Mineral.
34
,
463
(
2022
).
19.
E. H.
Nickel
and
J. D.
Grice
,
Mineral. Petrol.
64
,
237
(
1998
).
20.
I.
Kiflawi
and
J.
Bruley
,
Diamond Relat. Mater.
9
(
1
),
87
93
(
2000
).
21.
C.
Prescher
and
V. B.
Prakapenka
,
High Pressure Res.
35
,
223
230
(
2015
).
22.
A.
Dewaele
,
M.
Torrent
,
P.
Loubeyre
, and
M.
Mezouar
,
Phys. Rev. B
78
,
104102
(
2008
).
23.
W.
Kraus
and
G.
Nolze
,
J. Appl. Crystallogr.
29
,
301
303
(
1996
).
24.
H.
Putz
,
J. C.
Schön
, and
M.
Jansen
,
J. Appl. Crystallogr.
32
(
5
),
864
870
(
1999
).
25.
C.
Capillas
et al,
J. Appl. Crystallogr.
36
,
953
954
(
2003
).
26.
S. A.
Hayward
and
E. K. H.
Salje
,
J. Phys.: Condens. Matter
10
,
1421
1430
(
1998
).
You do not currently have access to this content.