Boron shows a variety of properties, determining a chemistry rich and complementary to that of carbon, the neighbor atom in the Periodic Table. In this work, we investigated the strength and nature of the interaction involving B12 or B36 monomer, which represent molecular prototypes of borophene, the two-dimensional allotrope of elemental boron. For the representation of the intermolecular interaction, we developed new potential energy surfaces (PESs) that are based on accurate ab initio or density functional theory data. It is shown that borophene molecules are bound by weak intermolecular interactions of van der Waals nature, perturbed by antiaromatic effects. Moreover, the proposed PESs are given in an analytical form proper to investigate the structures and energetics of (B12)n and (B36)n clusters (with n = 2–10) by applying a global geometry optimization procedure. It is found that the most stable structures of (B12)n favor close contacts between the edges of the monomers, leading to cage-like clusters as n increases, and conversely, (B36)n clusters are mainly composed of stacked or herringbone structures. These results suggest the possibility to produce a novel class of two-dimensional borophene materials, exhibiting different features compared to graphene like structures, which could be of interest for the nanotechnology.

1.
A.
James
,
C.
John
,
A.
Melekamburath
,
M.
Rajeevan
, and
R. S.
Swathi
, “
A journey toward the heaven of chemical fidelity of intermolecular force fields
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
12
,
e1599
(
2022
).
2.
D.
Wales
,
Energy Landscapes with Applications to Clusters, Biomolecules and Glasse
(
Cambridge University Press
,
2003
).
3.
M.
Bartolomei
,
F.
Pirani
, and
J. M.
Marques
, “
Low-energy structures of benzene clusters with a novel accurate potential surface
,”
J. Comput. Chem.
36
,
2291
2301
(
2015
).
4.
J.
Marques
,
F.
Pereira
,
J.
Llanio-Trujillo
,
P.
Abreu
,
M.
Albertí
,
A.
Aguilar
,
F.
Pirani
, and
M.
Bartolomei
, “
A global optimization perspective on molecular clusters
,”
Philos. Trans. R. Soc., A
375
,
20160198
(
2017
).
5.
R. A.
DiStasio
,
V. V.
Gobre
, and
A.
Tkatchenko
, “
Many-body van der Waals interactions in molecules and condensed matter
,”
J. Phys.: Condens. Matter
26
,
213202
(
2014
).
6.
J.
Lennard
and
I.
Jones
, “
On the determination of molecular fields.—I. From the variation of the viscosity of a gas with temperature
,”
Proc. R. Soc. London, Ser. A
106
,
441
462
(
1924
).
7.
J. E.
Lennard-Jones
, “
Cohesion
,”
Proc. Phys. Soc.
43
,
461
(
1931
).
8.
A. J.
Mannix
,
X.-F.
Zhou
,
B.
Kiraly
,
J. D.
Wood
,
D.
Alducin
,
B. D.
Myers
,
X.
Liu
,
B. L.
Fisher
,
U.
Santiago
,
J. R.
Guest
et al, “
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs
,”
Science
350
,
1513
1516
(
2015
).
9.
D. Y.
Zubarev
and
A. I.
Boldyrev
, “
Comprehensive analysis of chemical bonding in boron clusters
,”
J. Comput. Chem.
28
,
251
268
(
2007
).
10.
A. P.
Sergeeva
,
B. B.
Averkiev
,
H.-J.
Zhai
,
A. I.
Boldyrev
, and
L.-S.
Wang
, “
All-boron analogues of aromatic hydrocarbons: B17 and B18
,”
J. Chem. Phys.
134
,
224304
(
2011
).
11.
A. N.
Alexandrova
,
A. I.
Boldyrev
,
H.-J.
Zhai
, and
L.-S.
Wang
, “
All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry
,”
Coord. Chem. Rev.
250
,
2811
2866
(
2006
).
12.
A. P.
Sergeeva
,
I. A.
Popov
,
Z. A.
Piazza
,
W.-L.
Li
,
C.
Romanescu
,
L.-S.
Wang
, and
A. I.
Boldyrev
, “
Understanding boron through size-selected clusters: Structure, chemical bonding, and fluxionality
,”
Acc. Chem. Res.
47
,
1349
1358
(
2014
).
13.
L.-S.
Wang
, “
Photoelectron spectroscopy of size-selected boron clusters: From planar structures to borophenes and borospherenes
,”
Int. Rev. Phys. Chem.
35
,
69
142
(
2016
).
14.
H.
Hubert
,
B.
Devouard
,
L. A.
Garvie
,
M.
O'Keeffe
,
P. R.
Buseck
,
W. T.
Petuskey
, and
P. F.
McMillan
, “
Icosahedral packing of B12 icosahedra in boron suboxide (B6O)
,”
Nature
391
,
376
378
(
1998
).
15.
I.
Boustani
, “
Systematic ab initio investigation of bare boron clusters: determination of the geometry and electronic structures of Bn (n= 2–14)
,”
Phys. Rev. B
55
,
16426
(
1997
).
16.
Z. A.
Piazza
,
H.-S.
Hu
,
W.-L.
Li
,
Y.-F.
Zhao
,
J.
Li
, and
L.-S.
Wang
, “
Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets
,”
Nat. Commun.
5
,
3113
(
2014
).
17.
Q.
Chen
,
G.-F.
Wei
,
W.-J.
Tian
,
H.
Bai
,
Z.-P.
Liu
,
H.-J.
Zhai
, and
S.-D.
Li
, “
Quasi-planar aromatic B36 and B36 clusters: All-boron analogues of coronene
,”
Phys. Chem. Chem. Phys.
16
,
18282
18287
(
2014
).
18.
W.-L.
Li
,
X.
Chen
,
T.
Jian
,
T.-T.
Chen
,
J.
Li
, and
L.-S.
Wang
, “
From planar boron clusters to borophenes and metalloborophenes
,”
Nat. Rev. Chem
1
,
0071
(
2017
).
19.
Z.
Li
,
Z.
Zhao
,
X.
Shen
, and
Q.
Wang
, “
The selectivity of the transition metal encapsulated in fullerene-like B36 clusters
,”
Chem. Phys. Lett.
757
,
137876
(
2020
).
20.
F.
Weinhold
, “
“Noncovalent interaction”: A chemical misnomer that inhibits proper understanding of hydrogen bonding, rotation barriers, and other topics
,”
Molecules
28
,
3776
(
2023
).
21.
D. J.
Wales
and
M. P.
Hodges
, “
Global minima of water clusters (H2O)n, n≤21, described by an empirical potential
,”
Chem. Phys. Lett.
286
,
65
72
(
1998
).
22.
W. J.
Pullan
, “
Structure prediction of benzene clusters using a genetic algorithm
,”
J. Chem. Inf. Comput. Sci.
37
,
1189
1193
(
1997
).
23.
J.
Llanio-Trujillo
,
J.
Marques
, and
F.
Pereira
, “
An evolutionary algorithm for the global optimization of molecular clusters: Application to water, benzene, and benzene cation
,”
J. Phys. Chem. A
115
,
2130
2138
(
2011
).
24.
M.
Bartolomei
,
F.
Pirani
, and
J.
Marques
, “
Modeling coronene nanostructures: Analytical potential, stable configurations and ab initio energies
,”
J. Phys. Chem. C
121
,
14330
14338
(
2017
).
25.
M.
Pitonak
and
A.
Heßelmann
, “
Accurate intermolecular interaction energies from a combination of MP2 and TDDFT response theory
,”
J. Chem. Theory Comput.
6
,
168
178
(
2010
).
26.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
, “
Basis-set convergence in correlated calculations on Ne, N2, and H2O
,”
Chem. Phys. Lett.
286
,
243
252
(
1998
).
27.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
28.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
, and
G.
Rauhut
,
MOLPRO, version 2012.1, a package of ab initio programs
,
2012
, see http://www.molpro.net.
29.
Y.
Zhao
and
D. G.
Truhlar
, “
The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals
,”
Theor. Chem. Acc.
120
,
215
241
(
2008
).
30.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
,
1787
1799
(
2006
).
31.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
11627
(
1994
).
32.
J. S.
Binkley
,
J. A.
Pople
, and
W. J.
Hehre
, “
Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements
,”
J. Am. Chem. Soc.
102
,
939
947
(
1980
).
33.
H.-J.
Zhai
,
B.
Kiran
,
J.
Li
, and
L.-S.
Wang
, “
Hydrocarbon analogues of boron clusters—Planarity, aromaticity and antiaromaticity
,”
Nat. Mater.
2
,
827
833
(
2003
).
34.
W.
Huang
,
A. P.
Sergeeva
,
H.-J.
Zhai
,
B. B.
Averkiev
,
L.-S.
Wang
, and
A. I.
Boldyrev
, “
A concentric planar doubly Π-aromatic B19 cluster
,”
Nat. Chem.
2
,
202
206
(
2010
).
35.
F.
Pirani
,
M.
Albertí
,
A.
Castro
,
M.
Moix Teixidor
, and
D.
Cappelletti
, “
Atom–bond pairwise additive representation for intermolecular potential energy surfaces
,”
Chem. Phys. Lett.
394
,
37
44
(
2004
).
36.
F.
Pirani
,
S.
Brizi
,
L. F.
Roncaratti
,
P.
Casavecchia
,
D.
Cappelletti
, and
F.
Vecchiocattivi
, “
Beyond the Lennard-Jones model: A simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations
,”
Phys. Chem. Chem. Phys.
10
,
5489
5503
(
2008
).
37.
K.
Deb
and
H.-G.
Beyer
, “
Self-adaptive genetic algorithms with simulated binary crossover
,”
Evol. Comput.
9
,
197
221
(
2001
).
You do not currently have access to this content.