Proteins can form droplets via liquid–liquid phase separation (LLPS) in cells. Recent experiments demonstrate that LLPS is qualitatively different on two-dimensional (2D) surfaces compared to three-dimensional (3D) solutions. In this paper, we use mathematical modeling to investigate the causes of the discrepancies between LLPS in 2D and 3D. We model the number of proteins and droplets inducing LLPS by continuous-time Markov chains and use chemical reaction network theory to analyze the model. To reflect the influence of space dimension, droplet formation and dissociation rates are determined using the first hitting times of diffusing proteins. We first show that our stochastic model reproduces the appropriate phase diagram and is consistent with the relevant thermodynamic constraints. After further analyzing the model, we find that it predicts that the space dimension induces qualitatively different features of LLPS, which are consistent with recent experiments. While it has been claimed that the differences between 2D and 3D LLPS stem mainly from different diffusion coefficients, our analysis is independent of the diffusion coefficients of the proteins since we use the stationary model behavior. Our results thus give new hypotheses about how space dimension affects LLPS.

1.
S.
Alberti
,
A.
Gladfelter
, and
T.
Mittag
, “
Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates
,”
Cell
176
(
3
),
419
434
(
2019
).
2.
S. F.
Banani
,
H. O.
Lee
,
A. A.
Hyman
, and
M. K.
Rosen
, “
Biomolecular condensates: Organizers of cellular biochemistry
,”
Nat. Rev. Mol. Cell Biol.
18
(
5
),
285
298
(
2017
).
3.
C. P.
Brangwynne
,
C. R.
Eckmann
,
D. S.
Courson
,
A.
Rybarska
,
C.
Hoege
,
J.
Gharakhani
,
F.
Jülicher
, and
A. A.
Hyman
, “
Germline P granules are liquid droplets that localize by controlled dissolution/condensation
,”
Science
324
(
5935
),
1729
1732
(
2009
).
4.
A. A.
Hyman
,
C. A.
Weber
, and
F.
Jülicher
, “
Liquid-liquid phase separation in biology
,”
Annu. Rev. Cell Dev. Biol.
30
,
39
58
(
2014
).
5.
Y.
Shin
and
C. P.
Brangwynne
, “
Liquid phase condensation in cell physiology and disease
,”
Science
357
(
6357
),
eaaf4382
(
2017
).
6.
H.-L.
Liu
,
H.
Nan
,
W. W.
Zhao
,
X.-B.
Wan
, and
X.-J.
Fan
, “
Phase separation in DNA double-strand break response
,”
Nucleus
15
(
1
),
2296243
(
2024
).
7.
B. R.
Levone
,
S. C.
Lenzken
,
M.
Antonaci
,
A.
Maiser
,
A.
Rapp
,
F.
Conte
,
S.
Reber
,
J.
Mechtersheimer
,
A. E.
Ronchi
,
O.
Mühlemann
et al, “
FUS-dependent liquid–liquid phase separation is important for DNA repair initiation
,”
J. Cell Biol.
220
(
5
),
e202008030
(
2021
).
8.
J.
Miné-Hattab
,
S.
Liu
, and
A.
Taddei
, “
Repair foci as liquid phase separation: Evidence and limitations
,”
Genes
13
(
10
),
1846
(
2022
).
9.
N.
Kim
,
T.-H.
Kim
,
C.
Kim
,
J.-E.
Lee
,
M.-G.
Kang
,
S.
Shin
,
M.
Jung
,
J.-S.
Kim
,
J. Y.
Mun
,
H.-W.
Rhee
et al, “
Intrinsically disordered region-mediated condensation of IFN-inducible SCOTIN/SHISA-5 inhibits ER-to-Golgi vesicle transport
,”
Dev. Cell
58
(
19
),
1950
1966.e8
(
2023
).
10.
S.
Mehta
and
J.
Zhang
, “
Liquid–liquid phase separation drives cellular function and dysfunction in cancer
,”
Nat. Rev. Cancer
22
(
4
),
239
252
(
2022
).
11.
B.
Wang
,
L.
Zhang
,
T.
Dai
,
Z.
Qin
,
H.
Lu
,
L.
Zhang
, and
F.
Zhou
, “
Liquid–liquid phase separation in human health and diseases
,”
Signal Transduction Targeted Ther.
6
(
1
),
290
(
2021
).
12.
S.
Wegmann
,
B.
Eftekharzadeh
,
K.
Tepper
,
K. M.
Zoltowska
,
R. E.
Bennett
,
S.
Dujardin
,
P. R.
Laskowski
,
D.
MacKenzie
,
T.
Kamath
,
C.
Commins
et al, “
Tau protein liquid–liquid phase separation can initiate tau aggregation
,”
EMBO J.
37
(
7
),
e98049
(
2018
).
13.
W. T.
Snead
and
A. S.
Gladfelter
, “
The control centers of biomolecular phase separation: How membrane surfaces, PTMs, and active processes regulate condensation
,”
Mol. Cell
76
(
2
),
295
305
(
2019
).
14.
W. T.
Snead
,
A. P.
Jalihal
,
T. M.
Gerbich
,
I.
Seim
,
Z.
Hu
, and
A. S.
Gladfelter
, “
Membrane surfaces regulate assembly of ribonucleoprotein condensates
,”
Nat. Cell Biol.
24
(
4
),
461
470
(
2022
).
15.
N.
Kedersha
,
P.
Ivanov
, and
P.
Anderson
, “
Stress granules and cell signaling: More than just a passing phase?
,”
Trends Biochem. Sci.
38
(
10
),
494
506
(
2013
).
16.
Y.
Lin
,
D. S. W.
Protter
,
M. K.
Rosen
, and
R.
Parker
, “
Formation and maturation of phase-separated liquid droplets by RNA-binding proteins
,”
Mol. Cell
60
(
2
),
208
219
(
2015
).
17.
T.
Hirose
,
K.
Ninomiya
,
S.
Nakagawa
, and
T.
Yamazaki
, “
A guide to membraneless organelles and their various roles in gene regulation
,”
Nat. Rev. Mol. Cell Biol.
24
(
4
),
288
304
(
2023
).
18.
J. A.
Ditlev
, “
Membrane-associated phase separation: Organization and function emerge from a two-dimensional milieu
,”
J. Mol. Cell Biol.
13
(
4
),
319
324
(
2021
).
19.
L. B.
Case
, “
Membranes regulate biomolecular condensates
,”
Nat. Cell Biol.
24
(
4
),
404
405
(
2022
).
20.
F. A.
Thomas
,
I.
Visco
,
Z.
Petrášek
,
F.
Heinemann
, and
P.
Schwille
, “
Diffusion coefficients and dissociation constants of enhanced green fluorescent protein binding to free standing membranes
,”
Data Brief
5
,
537
541
(
2015
).
21.
S. K.
Zareh
,
M. C.
DeSantis
,
J. M.
Kessler
,
J.-L.
Li
, and
Y. M.
Wang
, “
Single-image diffusion coefficient measurements of proteins in free solution
,”
Biophys. J.
102
(
7
),
1685
1691
(
2012
).
22.
G.
Adam
and
M.
Delbrück
, “
Reduction of dimensionality in biological diffusion processes
,” in
Structural Chemistry and Molecular Biology
(
W.H. Freeman
,
1968
), p.
198
.
23.
J.
Norris
,
Markov Chains
(
Cambridge University Press
,
1997
).
24.
R.
Durrett
,
Essentials of Stochastic Processes
, 3rd ed. (
Springer
,
2016
).
25.
C. E.
Lawrence
,
Partial Differential Equations
(
American Mathematical Society
,
2022
), Vol.
19
.
26.
M. J.
Saxton
, “
Modeling 2d and 3d diffusion
,” in
Methods in Membrane Lipids
(
Humana Press
,
2007
), pp.
295
321
.
27.
W.
Nadler
and
D. L.
Stein
, “
Biological transport processes and space dimension
,”
Proc. Natl. Acad. Sci. U. S. A.
88
(
15
),
6750
6754
(
1991
).
28.
S. M.
Abel
,
J. P.
Roose
,
J. T.
Groves
,
A.
Weiss
, and
A. K.
Chakraborty
, “
The membrane environment can promote or suppress bistability in cell signaling networks
,”
J. Phys. Chem. B
116
(
11
),
3630
3640
(
2012
).
29.
L. D.
Shea
,
G. M.
Omann
, and
J. J.
Linderman
, “
Calculation of diffusion-limited kinetics for the reactions in collision coupling and receptor cross-linking
,”
Biophys. J.
73
(
6
),
2949
(
1997
).
30.
B. N.
Kholodenko
,
J. B.
Hoek
, and
H. V.
Westerhoff
, “
Why cytoplasmic signalling proteins should be recruited to cell membranes
,”
Trends Cell Biol.
10
(
5
),
173
178
(
2000
).
31.
J. M.
Haugh
, “
A unified model for signal transduction reactions in cellular membranes
,”
Biophys. J.
82
(
2
),
591
604
(
2002
).
32.
M. I.
Monine
and
J. M.
Haugh
, “
Signal transduction at point-blank range: Analysis of a spatial coupling mechanism for pathway crosstalk
,”
Biophys. J.
95
(
5
),
2172
2182
(
2008
).
33.
S.
Alonso
and
M.
Bär
, “
Phase separation and bistability in a three-dimensional model for protein domain formation at biomembranes
,”
Phys. Biol.
7
(
4
),
046012
(
2010
).
34.
S. D.
Lawley
and
J. P.
Keener
, “
Including rebinding reactions in well-mixed models of distributive biochemical reactions
,”
Biophys. J.
111
,
2317
2326
(
2016
).
35.
S. D.
Lawley
and
J. P.
Keener
, “
Rebinding in biochemical reactions on membranes
,”
Phys. Biol.
14
(
5
),
056002
(
2017
).
36.
M. G.
Dixon
and
J. P.
Keener
, “
Dimensional dependence of binding kinetics
,”
Bull. Math. Biol.
86
(
8
),
87
(
2024
).
37.
D. S.
Grebenkov
,
R.
Metzler
, and
G.
Oshanin
, “
Search efficiency in the Adam–Delbrück reduction-of-dimensionality scenario versus direct diffusive search
,”
New J. Phys.
24
(
8
),
083035
(
2022
).
38.
G.
Bartolucci
,
I. S.
Haugerud
,
T. C. T.
Michaels
, and
C. A.
Weber
, “
The interplay between biomolecular assembly and phase separation
,”
eLife
13
,
RP93003
(
2024
).
39.
C. P.
Brangwynne
,
P.
Tompa
, and
R. V.
Pappu
, “
Polymer physics of intracellular phase transitions
,”
Nat. Phys.
11
(
11
),
899
904
(
2015
).
40.
H.
Falahati
and
A.
Haji-Akbari
, “
Thermodynamically driven assemblies and liquid–liquid phase separations in biology
,”
Soft Matter
15
(
6
),
1135
1154
(
2019
).
41.
J. W.
Cahn
and
J. E.
Hilliard
, “
Free energy of a nonuniform system. I. Interfacial free energy
,”
J. Chem. Phys.
28
(
2
),
258
267
(
1958
).
42.
S. M.
Allen
and
J. W.
Cahn
, “
A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening
,”
Acta Metall.
27
(
6
),
1085
1095
(
1979
).
43.
D.
Jacqmin
, “
Calculation of two-phase Navier–Stokes flows using phase-field modeling
,”
J. Comput. Phys.
155
(
1
),
96
127
(
1999
).
44.
X.
Zhang
,
X.
Man
,
C. C.
Han
, and
D.
Yan
, “
Nucleation induced by phase separation in the interface of polyolefin blend
,”
Polymer
49
(
9
),
2368
2372
(
2008
).
45.
K.
Gasior
,
M. G.
Forest
,
A. S.
Gladfelter
, and
J. M.
Newby
, “
Modeling the mechanisms by which coexisting biomolecular RNA–protein condensates form
,”
Bull. Math. Biol.
82
,
153
(
2020
).
46.
K.
Gasior
,
J.
Zhao
,
G.
McLaughlin
,
M. G.
Forest
,
A. S.
Gladfelter
, and
J.
Newby
, “
Partial demixing of RNA-protein complexes leads to intradroplet patterning in phase-separated biological condensates
,”
Phys. Rev. E
99
(
1
),
012411
(
2019
).
47.
E. W.
Hester
,
S.
Carney
,
V.
Shah
,
A.
Arnheim
,
B.
Patel
,
D.
Di Carlo
, and
A. L.
Bertozzi
, “
Fluid dynamics alters liquid–liquid phase separation in confined aqueous two-phase systems
,”
Proc. Natl. Acad. Sci. U. S. A.
120
(
49
),
e2306467120
(
2023
).
48.
H.
Yu
,
S.
Lu
,
K.
Gasior
,
D.
Singh
,
S.
Vazquez-Sanchez
,
O.
Tapia
,
D.
Toprani
,
M. S.
Beccari
,
J. R.
Yates
III
,
S.
Da Cruz
et al, “
HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells
,”
Science
371
(
6529
),
eabb4309
(
2021
).
49.
A.
Girelli
,
H.
Rahmann
,
N.
Begam
,
A.
Ragulskaya
,
M.
Reiser
,
S.
Chandran
,
F.
Westermeier
,
M.
Sprung
,
F.
Zhang
,
C.
Gutt
, and
F.
Schreiber
, “
Microscopic dynamics of liquid-liquid phase separation and domain coarsening in a protein solution revealed by x-ray photon correlation spectroscopy
,”
Phys. Rev. Lett.
126
(
13
),
138004
(
2021
).
50.
K. L.
Saar
,
D.
Qian
,
L. L.
Good
,
A. S.
Morgunov
,
R.
Collepardo-Guevara
,
R. B.
Best
, and
T. P. J.
Knowles
, “
Theoretical and data-driven approaches for biomolecular condensates
,”
Chem. Rev.
123
(
14
),
8988
9009
(
2023
).
51.
E. W.
Martin
,
T. S.
Harmon
,
J. B.
Hopkins
,
S.
Chakravarthy
,
J. J.
Incicco
,
P.
Schuck
,
A.
Soranno
, and
T.
Mittag
, “
A multi-step nucleation process determines the kinetics of prion-like domain phase separation
,”
Nat. Commun.
12
(
1
),
4513
(
2021
).
52.
K.
Kamagata
,
N.
Iwaki
,
S.
Kanbayashi
,
T.
Banerjee
,
R.
Chiba
,
V.
Gaudon
,
B.
Castaing
, and
S.
Sakomoto
, “
Structure-dependent recruitment and diffusion of guest proteins in liquid droplets of FUS
,”
Sci. Rep.
12
(
1
),
7101
(
2022
).
53.
J. M.
Ball
and
J.
Carr
, “
Asymptotic behaviour of solutions to the Becker-Doring equations for arbitrary initial data
,”
Proc. R. Soc. Edinburgh, Sect. A
108
,
109
116
(
1988
).
54.
E.
Hingant
and
R.
Yvinec
, “
Deterministic and stochastic Becker-Döring equations: Past and recent mathematical developments
,” in
Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology
(
Springer
,
2016
), pp.
175
204
.
55.
E.
Hingant
and
R.
Yvinec
, “
Quasi-stationary distribution and metastability for the stochastic Becker-Döring model
,”
Electron. Commun. Probab.
26
,
1
14
(
2021
).
56.
D. F.
Anderson
,
G.
Craciun
, and
T. G.
Kurtz
, “
Product-form stationary distributions for deficiency zero chemical reaction networks
,”
Bull. Math. Biol.
72
(
8
),
1947
1970
(
2010
).
57.
N. A.
Yewdall
,
A. A. M.
André
,
T.
Lu
, and
E.
Spruijt
, “
Coacervates as models of membraneless organelles
,”
Curr. Opin. Colloid Interface Sci.
52
,
101416
(
2021
).
58.
S.
Qin
and
H.-X.
Zhou
, “
Protein folding, binding, and droplet formation in cell-like conditions
,”
Curr. Opin. Struct. Biol.
43
,
28
37
(
2017
).
59.
M. B.
Flegg
, “
Smoluchowski reaction kinetics for reactions of any order
,”
SIAM J. Appl. Math.
76
(
4
),
1403
1432
(
2016
).
60.
J. B.
Madrid
and
S. D.
Lawley
, “
Competition between slow and fast regimes for extreme first passage times of diffusion
,”
J. Phys. A: Math. Theor.
53
(
33
),
335002
(
2020
).
61.
M. V.
Smoluchowski
, “
Versuch einer mathematischen theorie der koagulationskinetik kolloider lösungen
,”
Z. Phys. Chem.
92U
(
1
),
129
168
(
1918
).
62.
D.
Shoup
and
A.
Szabo
, “
Role of diffusion in ligand binding to macromolecules and cell-bound receptors
,”
Biophys. J.
40
,
33
39
(
1982
).
63.
C. B.
Paul
,
Stochastic Processes in Cell Biology
(
Springer
,
2014
), Vol.
41
.
64.
A. A.
Polyansky
,
L. D.
Gallego
,
R. G.
Efremov
,
A.
Köhler
, and
B.
Zagrovic
, “
Protein compactness and interaction valency define the architecture of a biomolecular condensate across scales
,”
Elife
12
,
e80038
(
2023
).
65.
Y. C.
Kim
,
R. B.
Best
, and
J.
Mittal
, “
Macromolecular crowding effects on protein–protein binding affinity and specificity
,”
J. Chem. Phys.
133
(
20
),
205101
(
2010
).
66.
F.
Muzzopappa
,
J.
Hummert
,
M.
Anfossi
,
S. A.
Tashev
,
D.-P.
Herten
, and
F.
Erdel
, “
Detecting and quantifying liquid–liquid phase separation in living cells by model-free calibrated half-bleaching
,”
Nat. Commun.
13
(
1
),
7787
(
2022
).
67.
D.
Lee
,
J.
Kim
, and
G.
Lee
, “
Simple methods to determine the dissociation constant, Kd
,”
Mol. Cells
47
,
100112
(
2024
).
68.
S.
Banjade
and
M. K.
Rosen
, “
Phase transitions of multivalent proteins can promote clustering of membrane receptors
,”
elife
3
,
e04123
(
2014
).
69.
P.
Li
,
S.
Banjade
,
H.-C.
Cheng
,
S.
Kim
,
B.
Chen
,
L.
Guo
,
M.
Llaguno
,
J. V.
Hollingsworth
,
D. S.
King
,
S. F.
Banani
et al, “
Phase transitions in the assembly of multivalent signalling proteins
,”
Nature
483
(
7389
),
336
340
(
2012
).
70.
R.
Laghmach
,
I.
Alshareedah
,
M.
Pham
,
M.
Raju
,
P. R.
Banerjee
, and
D. A.
Potoyan
, “
RNA chain length and stoichiometry govern surface tension and stability of protein-RNA condensates
,”
Iscience
25
(
4
),
104105
(
2022
).
71.
E. J.
Carr
,
J. M.
Ryan
, and
M. J.
Simpson
, “
Diffusion in heterogeneous discs and spheres: New closed-form expressions for exit times and homogenization formulas
,”
J. Chem. Phys.
153
(
7
),
074115
(
2020
).
72.
D. T.
Gillespie
, “
A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
,”
J. Comput. Phys.
22
,
403
434
(
1976
).
73.
T. K.
Sherwood
, in
Transport Phenomena
, edited by
R.
Byron Bird
,
W. E.
Stewart
, and
E. N.
Lightfoot
(
John Wiley
,
New York, London
,
1960
), Vol.
780
, pp.
13
75
.
74.
A.
Baer
,
S. E.
Wawra
,
K.
Bielmeier
,
M. J.
Uttinger
,
D. M.
Smith
,
W.
Peukert
,
J.
Walter
, and
A.-S.
Smith
, “
The Stokes–Einstein–Sutherland equation at the nanoscale revisited
,”
Small
20
(
6
),
2304670
(
2024
).
75.
D. T.
Gillespie
, “
Exact stochastic simulation of coupled chemical reactions
,”
J. Phys. Chem.
81
(
25
),
2340
2361
(
1977
).
76.
Y.
Cao
,
D. T.
Gillespie
, and
L. R.
Petzold
, “
Avoiding negative populations in explicit Poisson tau-leaping
,”
J. Chem. Phys.
123
(
5
),
054104
(
2005
).
77.
C.
Mortici
, “
A new fast asymptotic series for the gamma function
,”
Ramanujan J.
38
(
3
),
549
559
(
2015
).
78.
T. G.
Kurtz
, “
The relationship between stochastic and deterministic models for chemical reactions
,”
J. Chem. Phys.
57
(
7
),
2976
2978
(
1972
).
79.
G.
Guigas
and
M.
Weiss
, “
Sampling the cell with anomalous diffusion—The discovery of slowness
,”
Biophys. J.
94
(
1
),
90
94
(
2008
).
80.
T. A.
Waigh
and
N.
Korabel
, “
Heterogeneous anomalous transport in cellular and molecular biology
,”
Rep. Prog. Phys.
86
(
12
),
126601
(
2023
).
81.
Y.-q.
Ma
and
J.-w.
Liu
, “
The competing Glauber and Kawasaki dynamics induced phase transition in the ferromagnetic Ising model
,”
Phys. Lett. A
238
(
2–3
),
159
163
(
1998
).
82.
F.
Den Hollander
,
F.
Nardi
,
E.
Olivieri
, and
E.
Scoppola
, “
Droplet growth for three-dimensional Kawasaki dynamics
,”
Probab. Theory Relat. Fields
125
(
2
),
153
194
(
2003
).
83.
J.
Wang
,
S.
Kudesia
,
D.
Bratko
, and
A.
Luzar
, “
Computational probe of cavitation events in protein systems
,”
Phys. Chem. Chem. Phys.
13
(
44
),
19902
19910
(
2011
).
84.
D.
Qin
,
Z.
He
,
P.
Li
, and
S.
Zhang
, “
Liquid-liquid phase separation in nucleation process of biomineralization
,”
Front. Chem.
10
,
834503
(
2022
).
85.
Y.
Iida
,
S.
Hiraide
,
M. T.
Miyahara
, and
S.
Watanabe
, “
Solute interaction-driven and solvent interaction-driven liquid–liquid phase separation induced by molecular size difference
,”
J. Chem. Phys.
160
(
4
),
044504
(
2024
).
86.
M.
Naz
,
L.
Zhang
,
C.
Chen
,
S.
Yang
,
H.
Dou
,
S.
Mann
, and
J.
Li
, “
Self-assembly of stabilized droplets from liquid–liquid phase separation for higher-order structures and functions
,”
Commun. Chem.
7
(
1
),
79
(
2024
).
87.
A. A. M.
André
and
E.
Spruijt
, “
Liquid–liquid phase separation in crowded environments
,”
Int. J. Mol. Sci.
21
(
16
),
5908
(
2020
).
You do not currently have access to this content.