We present a novel method for identifying topological features of chromatin domains in live cells using single-particle tracking and topological data analysis (TDA). By applying TDA to particle trajectories, we can effectively detect complex spatial patterns, such as loops, that are often missed by traditional time series analysis. Using simulations of polymer bead–spring chains, we have validated the accuracy of our method and determined its limitations for detecting loops. Our approach offers a promising avenue for exploring the topological complexity of chromatin in living cells using TDA techniques.

1.
E. J.
Amézquita
,
M. Y.
Quigley
,
T.
Ophelders
,
E.
Munch
, and
D. H.
Chitwood
, “
The shape of things to come: Topological data analysis and biology, from molecules to organisms
,”
Dev. Dyn.
249
,
816
833
(
2020
).
2.
F.
Chazal
and
B.
Michel
, “
An introduction to topological data analysis: Fundamental and practical aspects for data scientists
,”
Front. Artif. Intell.
4
,
667963
(
2021
).
3.
Y.
Skaf
and
R.
Laubenbacher
, “
Topological data analysis in biomedicine: A review
,”
J. Biomed. Inf.
130
,
104082
(
2022
).
4.
A.
Bukkuri
,
N.
Andor
, and
I. K.
Darcy
, “
Applications of topological data analysis in oncology
,”
Front. Artif. Intell.
4
,
659037
(
2021
).
5.
M.-V.
Ciocanel
,
R.
Juenemann
,
A. T.
Dawes
, and
S. A.
McKinley
, “
Topological data analysis approaches to uncovering the timing of ring structure onset in filamentous networks
,”
Bull. Math. Biol.
83
,
21
(
2021
).
6.
L.
Wasserman
, “
Topological data analysis
,”
Annu. Rev. Stat. Appl.
5
,
501
532
(
2018
).
7.
A.
Zomorodian
and
G.
Carlsson
, “
Computing persistent homology
,” in
Proceedings of the 20th Annual Symposium on Computational Geometry (ACM)
(
Springer Nature
,
2004
), pp.
347
356
.
8.
K. S.
Bloom
, “
Beyond the code: The mechanical properties of DNA as they relate to mitosis
,”
Chromosoma
117
,
103
110
(
2008
).
9.
D.
Kolbin
,
B. L.
Walker
,
C.
Hult
,
J. D.
Stanton
,
D.
Adalsteinsson
,
M. G.
Forest
, and
K.
Bloom
, “
Polymer modeling reveals interplay between physical properties of chromosomal DNA and the size and distribution of condensin-based chromatin loops
,”
Genes
14
,
2193
(
2023
).
10.
J.
Lawrimore
,
J. K.
Aicher
,
P.
Hahn
,
A.
Fulp
,
B.
Kompa
,
L.
Vicci
,
M.
Falvo
,
R. M.
Taylor
, and
K.
Bloom
, “
ChromoShake: A chromosome dynamics simulator reveals that chromatin loops stiffen centromeric chromatin
,”
Mol. Biol. Cell
27
,
153
166
(
2016
).
11.
Y.
He
,
J.
Lawrimore
,
D.
Cook
,
E. E.
Van Gorder
,
S. C.
De Larimat
,
D.
Adalsteinsson
,
M. G.
Forest
, and
K.
Bloom
, “
Statistical mechanics of chromosomes: In vivo and in silico approaches reveal high-level organization and structure arise exclusively through mechanical feedback between loop extruders and chromatin substrate properties
,”
Nucleic Acids Res.
48
,
11284
11303
(
2020
).
12.
Y.
He
,
D.
Adalsteinsson
,
B.
Walker
,
J.
Lawrimore
,
M. G.
Forest
, and
K.
Bloom
, “
Simulating dynamic chromosome compaction: Methods for bridging in silico to in vivo
,”
Methods Mol. Biol.
2415
,
211
220
(
2022
).
13.
G.
Tauzin
,
U.
Lupo
,
L.
Tunstall
,
J. B.
Pérez
,
M.
Caorsi
,
A. M.
Medina-Mardones
,
A.
Dassatti
, and
K.
Hess
, “
giotto-tda: A topological data analysis toolkit for machine learning and data exploration
,” J. Mach. Learn. Res.
22
(39),
1
6
(
2021
).
14.
G.
Tauzin
,
U.
Lupo
,
L.
Tunstall
,
J. B.
Pérez
,
M.
Caorsi
,
A. M.
Medina-Mardones
,
A.
Dassatti
, and
K.
Hess
(2021). “
giotto-tda: A high-performance topological machine learning toolbox
,” giotto_tda, gitHub. https://github.com/giotto-ai/giotto-tda
15.
J.
Lawrimore
,
B.
Friedman
,
A.
Doshi
, and
K.
Bloom
, “
RotoStep: A chromosome dynamics simulator reveals mechanisms of loop extrusion
,”
Cold Spring Harbor Symp. Quant. Biol.
82
,
101
109
(
2017
).
16.
J.
Yan
,
T. J.
Maresca
,
D.
Skoko
,
C. D.
Adams
,
B.
Xiao
,
M. O.
Christensen
,
R.
Heald
, and
J. F.
Marko
, “
Micromanipulation studies of chromatin fibers in Xenopus egg extracts reveal ATP-dependent chromatin assembly dynamics
,”
Mol. Biol. Cell
18
,
464
474
(
2007
).
17.
K.
Bloom
and
D.
Kolbin
, “
Mechanisms of DNA mobilization and sequestration
,”
Genes
13
,
352
(
2022
).
You do not currently have access to this content.