The doping of CdS quantum dots (QDs) with Cu(I) disrupts electron–hole correlation due to hole trapping by the dopant ion, post-photoexcitation. The present paper examines the effect of such disruption on the rate of photoinduced electron transfer (PET) from the QDs to methyl viologen (MV2+), with implications in their photocatalytic activity. A significantly greater efficiency of PL quenching by MV2+ is observed for the doped QDs than for the undoped ones. Interestingly, the Stern–Volmer plots constructed using PL intensities exhibit an upward curvature for both the cases, while the PL lifetimes remain unaffected. This observation is rationalized by considering the adsorption of the quencher on the surface of the QDs and ultrafast PET post-photoexcitation. Ultrafast transient absorption experiments confirm a faster electron transfer for the doped QDs. It is also realized that the transient absorption experiment yields a more accurate estimate of the binding constant of the quencher with the QDs, than the PL experiment.

1.
V.
Krivenkov
,
P.
Samokhvalov
,
I. S.
Vasil’Evskii
,
N. I.
Kargin
, and
I.
Nabiev
, “
Plasmon-exciton interaction strongly increases the efficiency of a quantum dot-based near-infrared photodetector operating in the two-photon absorption mode under normal conditions
,”
Nanoscale
13
(
47
),
19929
19935
(
2021
).
2.
N. W.
Hendrickx
,
W. I. L.
Lawrie
,
M.
Russ
,
F.
van Riggelen
,
S. L.
de Snoo
,
R. N.
Schouten
,
A.
Sammak
,
G.
Scappucci
, and
M.
Veldhorst
, “
A four-qubit germanium quantum processor
,”
Nature
591
(
7851
),
580
585
(
2021
).
3.
H.
Wang
,
S.
Nakao
,
N.
Miyashita
,
Y.
Oteki
,
M.
Giteau
,
Y.
Okada
,
T.
Takamoto
,
H.
Saito
,
S.
Magaino
,
K.
Takagi
,
T.
Hasegawa
,
T.
Kubo
,
T.
Kinoshita
,
J.
Nakazaki
, and
H.
Segawa
, “
Spectral splitting solar cells constructed with InGaP/GaAs two-junction subcells and infrared PbS quantum dot/ZnO nanowire subcells
,”
ACS Energy Lett.
7
(
8
),
2477
2485
(
2022
).
4.
T.
Kim
,
S.
Lim
,
S.
Yun
,
S.
Jeong
,
T.
Park
, and
J.
Choi
, “
Design strategy of quantum dot thin-film solar cells
,”
Small
16
(
45
),
2002460
(
2020
).
5.
J. X.
Lv
,
Z. M.
Zhang
,
J.
Wang
,
X. L.
Lu
,
W.
Zhang
, and
T. B.
Lu
, “
In situ synthesis of CdS/graphdiyne heterojunction for enhanced photocatalytic activity of hydrogen production
,”
ACS Appl. Mater. Interfaces
11
(
3
),
2655
2661
(
2019
).
6.
F.
Qiu
,
Z.
Han
,
J. J.
Peterson
,
M. Y.
Odoi
,
K. L.
Sowers
, and
T. D.
Krauss
, “
Photocatalytic hydrogen generation by CdSe/CdS nanoparticles
,”
Nano Lett.
16
(
9
),
5347
5352
(
2016
).
7.
H.
Zhou
,
X.
Sheng
,
J.
Xiao
,
Z.
Ding
,
D.
Wang
,
X.
Zhang
,
J.
Liu
,
R.
Wu
,
X.
Feng
, and
L.
Jiang
, “
Increasing the efficiency of photocatalytic reactions via surface microenvironment engineering
,”
J. Am. Chem. Soc.
142
(
6
),
2738
2743
(
2020
).
8.
J. K.
Widness
,
D. G.
Enny
,
K. S.
McFarlane-Connelly
,
M. T.
Miedenbauer
,
T. D.
Krauss
, and
D. J.
Weix
, “
CdS quantum dots as potent photoreductants for organic chemistry enabled by auger processes
,”
J. Am. Chem. Soc.
144
(
27
),
12229
12246
(
2022
).
9.
X.
Wu
,
S.
Xie
,
C.
Liu
,
C.
Zhou
,
J.
Lin
,
J.
Kang
,
Q.
Zhang
,
Z.
Wang
, and
Y.
Wang
, “
Ligand-Controlled photocatalysis of CdS quantum dots for lignin valorization under visible light
,”
ACS Catal.
9
(
9
),
8443
8451
(
2019
).
10.
C. D.
Sahm
,
E.
Mates-Torres
,
N.
Eliasson
,
K.
Sokołowski
,
A.
Wagner
,
K. E.
Dalle
,
Z.
Huang
,
O. A.
Scherman
,
L.
Hammarström
,
M.
García-Melchor
, and
E.
Reisner
, “
Imidazolium-modification enhances photocatalytic CO2 reduction on ZnSe quantum dots
,”
Chem. Sci.
12
(
26
),
9078
9087
(
2021
).
11.
C.
Das
,
J.
Grover
,
N.
Tannu
,
A.
Das
,
D.
Maiti
,
A.
Dutta
, and
G. K.
Lahiri
, “
Recent developments in first-row transition metal complex-catalyzed CO2 hydrogenation
,”
Dalton Trans.
51
(
21
),
8160
8168
(
2022
).
12.
S.
Singh
,
C.
Rao
,
C. K.
Nandi
, and
T. K.
Mukherjee
, “
Quantum dot-embedded hybrid photocatalytic nanoreactors for visible light photocatalysis and dye degradation
,”
ACS Appl. Nano Mater.
5
(
5
),
7427
7439
(
2022
).
13.
X. B.
Li
,
C. H.
Tung
, and
L. Z.
Wu
, “
Semiconducting quantum dots for artificial photosynthesis
,”
Nat. Rev. Chem
2
(
8
),
160
173
(
2018
).
14.
K.
Chen
,
S. J.
Ding
,
S.
Ma
,
W.
Wang
,
S.
Liang
,
L.
Zhou
, and
Q. Q.
Wang
, “
Enhancing photocatalytic activity of Au-capped CdS–PbS heterooctahedrons by morphology control
,”
J. Phys. Chem. C
124
(
14
),
7938
7945
(
2020
).
15.
S.
Xiong
,
B.
Xi
, and
Y.
Qian
, “
CdS hierarchical nanostructures with tunable morphologies: Preparation and photocatalytic properties
,”
J. Phys. Chem. C
114
(
33
),
14029
14035
(
2010
).
16.
L.
Cheng
,
Q.
Xiang
,
Y.
Liao
, and
H.
Zhang
, “
CdS-based photocatalysts
,”
Energy Environ. Sci.
11
(
6
),
1362
1391
(
2018
).
17.
Y.
Shemesh
,
J. E.
Macdonald
,
G.
Menagen
, and
U.
Banin
, “
Synthesis and photocatalytic properties of a family of CdS-PdX hybrid nanoparticles
,”
Angew. Chem.
123
(
5
),
1217
1221
(
2011
).
18.
B.
Archana
,
N.
Kottam
,
S.
Nayak
,
K. B.
Chandrasekhar
, and
M. B.
Sreedhara
, “
Superior photocatalytic hydrogen evolution performances of WS2 over MoS2 integrated with CdS nanorods
,”
J. Phys. Chem. C
124
(
27
),
14485
14495
(
2020
).
19.
U.
Bharagav
,
N. R.
Reddy
,
V. N.
Koteswararao
,
P.
Ravi
,
K.
Pratap
,
M.
Sathish
,
K. K.
Cheralathan
,
M. V.
Shankar
, and
M. M.
Kumari
, “
Heterojunction of CdS nanocapsules–WO3 nanosheets composite as a stable and efficient photocatalyst for hydrogen evolution
,”
Energy Fuels
34
(
11
),
14598
14610
(
2020
).
20.
X.
Meng
,
S.
Wang
,
C.
Zhang
,
C.
Dong
,
R.
Li
,
B.
Li
,
Q.
Wang
, and
Y.
Ding
, “
Boosting hydrogen evolution performance of a CdS-based photocatalyst: In situ transition from type I to type II heterojunction during photocatalysis
,”
ACS Catal.
12
(
16
),
10115
10126
(
2022
).
21.
Z.
Yang
and
J.
Wang
, “
Enhanced photocatalytic degradation of emerging contaminants using Ti3C2Tx MXene-supported CdS quantum dots
,”
Langmuir
39
,
4179
(
2023
).
22.
M. D.
Peterson
,
S. C.
Jensen
,
D. J.
Weinberg
, and
E. A.
Weiss
, “
Mechanisms for adsorption of methyl viologen on cds quantum dots
,”
ACS Nano
8
(
3
),
2826
2837
(
2014
).
23.
A. J.
Morris-Cohen
,
M. D.
Peterson
,
M. T.
Frederick
,
J. M.
Kamm
, and
E. A.
Weiss
, “
Evidence for a through-space pathway for electron transfer from quantum dots to carboxylate-functionalized viologens
,”
J. Phys. Chem. Lett.
3
(
19
),
2840
2844
(
2012
).
24.
A. J.
Morris-Cohen
,
M. T.
Frederick
,
L. C.
Cass
, and
E. A.
Weiss
, “
Simultaneous determination of the adsorption constant and the photoinduced electron transfer rate for a Cds quantum dot–viologen complex
,”
J. Am. Chem. Soc.
133
(
26
),
10146
10154
(
2011
).
25.
S. M.
Kobosko
,
J. T.
Dubose
, and
P. V.
Kamat
, “
Perovskite photocatalysis. Methyl viologen induces unusually long-lived charge carrier separation in CsPbBr3 nanocrystals
,”
ACS Energy Lett.
5
(
1
),
221
223
(
2020
).
26.
J. T.
Dubose
and
P. V.
Kamat
, “
Surface chemistry matters. How ligands influence excited state interactions between CsPbBr3 and methyl viologen
,”
J. Phys. Chem. C
124
(
24
),
12990
12998
(
2020
).
27.
A.
Thomas
,
K.
Sandeep
,
S. M.
Somasundaran
, and
K. G.
Thomas
, “
How trap states affect charge carrier dynamics of CdSe and InP quantum dots: Visualization through complexation with viologen
,”
ACS Energy Lett.
3
(
10
),
2368
2375
(
2018
).
28.
T. K.
Mukherjee
,
P. P.
Mishra
, and
A.
Datta
, “
Photoinduced electron transfer from chlorin p6 to methyl viologen in aqueous micelles
,”
Chem. Phys. Lett.
407
(
1–3
),
119
123
(
2005
).
29.
Y.
Liang
,
H.
Ma
,
W.
Zhang
,
Z.
Cui
,
P.
Fu
,
M.
Liu
,
X.
Qiao
, and
X.
Pang
, “
Size effect of semiconductor quantum dots as photocatalysts for PET-RAFT polymerization
,”
Polym. Chem.
11
(
31
),
4961
4967
(
2020
).
30.
F.
Ali
,
S.
Das
,
S.
Banerjee
,
B. G.
Maddala
,
G.
Rana
, and
A.
Datta
, “
Intense photoluminescence from Cu-doped CdSe nanotetrapods triggered by ultrafast hole capture
,”
Nanoscale
13
(
33
),
14228
14235
(
2021
).
31.
K.
Xu
,
E. T.
Vickers
,
B.
Luo
,
A. C.
Allen
,
E.
Chen
,
G.
Roseman
,
Q.
Wang
,
D. S.
Kliger
,
G. L.
Millhauser
,
W.
Yang
,
X.
Li
, and
J. Z.
Zhang
, “
First synthesis of Mn-doped cesium lead bromide perovskite magic sized clusters at room temperature
,”
J. Phys. Chem. Lett.
11
(
3
),
1162
1169
(
2020
).
32.
S.
Das
,
G.
Rana
,
F.
Ali
, and
A.
Datta
, “
Single particle level dynamics of photoactivation and suppression of Auger recombination in aqueous Cu-doped CdS quantum dots
,”
Nanoscale
15
,
4469
(
2023
).
33.
R.
Viswanatha
,
S.
Brovelli
,
A.
Pandey
,
S. A.
Crooker
, and
V. I.
Klimov
, “
Copper-doped inverted core/shell nanocrystals with ‘permanent’ optically active holes
,”
Nano Lett.
11
(
11
),
4753
4758
(
2011
).
34.
K. E.
Knowles
,
K. H.
Hartstein
,
T. B.
Kilburn
,
A.
Marchioro
,
H. D.
Nelson
,
P. J.
Whitham
, and
D. R.
Gamelin
, “
Luminescent colloidal semiconductor nanocrystals containing copper: Synthesis, photophysics, and applications
,”
Chem. Rev.
116
(
18
),
10820
10851
(
2016
).
35.
J.
Bang
,
S.
Das
,
E. J.
Yu
,
K.
Kim
,
H.
Lim
,
S.
Kim
, and
J. W.
Hong
, “
Controlled photoinduced electron transfer from InP/ZnS quantum dots through Cu doping: A new prototype for the visible-light photocatalytic hydrogen evolution reaction
,”
Nano Lett.
20
(
9
),
6263
6271
(
2020
).
36.
C.
Orrison
,
J. R.
Meeder
,
B.
Zhang
,
J.
Puthenpurayil
,
M. B.
Hall
,
M.
Nippe
, and
D. H.
Son
, “
Efficient redox-neutral photocatalytic formate to carbon monoxide conversion enabled by long-range hot electron transfer from Mn-doped quantum dots
,”
J. Am. Chem. Soc.
143
(
27
),
10292
10300
(
2021
).
37.
K.
Mishra
,
A.
Das
, and
S.
Ghosh
, “
Subpicosecond charge separation time scale at graphene quantum dot surface
,”
J. Phys. Chem. C
124
(
44
),
24115
24125
(
2020
).
38.
D.
Sebastian
,
A.
Pallikkara
,
H.
Bhatt
,
H. N.
Ghosh
, and
K.
Ramakrishnan
, “
Unravelling the surface-state assisted ultrafast charge transfer dynamics of graphene quantum dot-based nanohybrids via transient absorption spectroscopy
,”
J. Phys. Chem. C
126
(
27
),
11182
11192
(
2022
).
39.
J.
Föhlinger
,
S.
Maji
,
A.
Brown
,
E.
Mijangos
,
S.
Ott
, and
L.
Hammarström
, “
Self-quenching and slow hole injection may limit the efficiency in NiO-based dye-sensitized solar cells
,”
J. Phys. Chem. C
122
(
25
),
13902
13910
(
2018
).
40.
S.
Das
,
S.
Rakshit
, and
A.
Datta
, “
Mechanistic insights into selective sensing of Pb2+ in water by photoluminescent CdS quantum dots
,”
J. Phys. Chem. C
125
(
28
),
15396
15404
(
2021
).
41.
I.
Vinçon
,
A.
Barfüßer
,
J.
Feldmann
, and
Q. A.
Akkerman
, “
Quantum dot metal salt interactions unraveled by the sphere of action model
,”
J. Am. Chem. Soc.
145
(
26
),
14395
14403
(
2023
).
42.
M. C.
Sekhar
,
S.
Paul
,
A.
De
, and
A.
Samanta
, “
An ultrafast transient absorption study of charge separation and recombination dynamics in CdSe QDs and methyl viologen: Dependence on surface Stoichiometry
,”
ChemistrySelect
3
(
9
),
2675
2682
(
2018
).
43.
T.
Uematsu
,
A.
Doko
,
T.
Torimoto
,
K.
Oohora
,
T.
Hayashi
, and
S.
Kuwabata
, “
Photoinduced electron transfer of ZnS–AgInS2 solid-solution semiconductor nanoparticles: Emission quenching and photocatalytic reactions controlled by electrostatic forces
,”
J. Phys. Chem. C
117
(
30
),
15667
15676
(
2013
).
44.
A.
Aboulaich
,
D.
Billaud
,
M.
Abyan
,
L.
Balan
,
J. J.
Gaumet
,
G.
Medjadhi
,
J.
Ghanbaja
, and
R.
Schneider
, “
One-pot noninjection route to CdS quantum dots via hydrothermal synthesis
,”
ACS Appl. Mater. Interfaces
4
(
5
),
2561
2569
(
2012
).
45.
S.
Rakshit
,
A.
Datta
, and
S.
Das
, “
Interplay of multiexciton relaxation and carrier trapping in photoluminescent CdS quantum dots prepared in aqueous medium
,”
J. Phys. Chem. C
124
(
51
),
28313
28322
(
2020
).
46.
S.
Wageh
,
A. A.
Al-Ghamdi
,
A. A.
Al-Zahrani
, and
H.
Driss
, “
High quantum yield Cu doped CdSe quantum dots
,”
Mater. Res. Express
6
(
8
),
0850d4
(
2019
).
47.
H. D.
Nelson
,
X.
Li
, and
D. R.
Gamelin
, “
Computational studies of the electronic structures of copper-doped CdSe nanocrystals: Oxidation states, Jahn–Teller distortions, vibronic bandshapes, and singlet-triplet splittings
,”
J. Phys. Chem. C
120
(
10
),
5714
5723
(
2016
).
48.
Y.
Gao
and
X.
Peng
, “
Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: The effects of surface and ligands
,”
J. Am. Chem. Soc.
137
(
12
),
4230
4235
(
2015
).
49.
Z.
Mirzaeifard
,
Z.
Shariatinia
,
M.
Jourshabani
, and
S. M.
Rezaei Darvishi
, “
ZnO photocatalyst revisited: Effective photocatalytic degradation of emerging contaminants using S-doped ZnO nanoparticles under visible light radiation
,”
Ind. Eng. Chem. Res.
59
(
36
),
15894
15911
(
2020
).
50.
P.
Zeng
,
N.
Kirkwood
,
P.
Mulvaney
,
K.
Boldt
, and
T. A.
Smith
, “
Shell effects on hole-coupled electron transfer dynamics from CdSe/CdS quantum dots to methyl viologen
,”
Nanoscale
8
(
19
),
10380
10387
(
2016
).
51.
C.
Kong
,
L.
Qin
,
J.
Liu
,
X.
Zhong
,
L.
Zhu
, and
Y. T.
Long
, “
Determination of dissolved oxygen based on photoinduced electron transfer from quantum dots to methyl viologen
,”
Anal. Methods
2
(
8
),
1056
1062
(
2010
).
52.
P.
Tyagi
and
P.
Kambhampati
, “
False multiple exciton recombination and multiple exciton generation signals in semiconductor quantum dots arise from surface charge trapping
,”
J. Chem. Phys.
134
(
9
),
094706
(
2011
).
53.
J. R.
Lakowicz
, “
Quenching of fluorescence
,” in
Principles of Fluorescence Spectroscopy
, edited by
J. R.
Lakowicz
(
Springer US
,
Boston, MA
,
1983
), pp.
257
301
.
54.
J.
Huang
,
D.
Stockwell
,
Z.
Huang
,
D. L.
Mohler
, and
T.
Lian
, “
Photoinduced ultrafast electron transfer from CdSe quantum dots to re-bipyridyl complexes
,”
J. Am. Chem. Soc.
130
(
17
),
5632
5633
(
2008
).
55.
G.
Grimaldi
,
J. J.
Geuchies
,
W.
Van Der Stam
,
I.
Du Fossé
,
B.
Brynjarsson
,
N.
Kirkwood
,
S.
Kinge
,
L. D. A.
Siebbeles
, and
A. J.
Houtepen
, “
Spectroscopic evidence for the contribution of holes to the bleach of Cd-chalcogenide quantum dots
,”
Nano Lett.
19
(
5
),
3002
3010
(
2019
).
56.
H. N.
Ghosh
,
P.
Singh
,
N.
Ghorai
, and
A.
Thakur
, “
Temperature-dependent ultrafast charge carrier dynamics in amorphous and crystalline Sb2Se3 thin films
,”
J. Phys. Chem. C
125
(
9
),
5197
5206
(
2021
).
57.
G.
De Miguel
,
A.
Garzón-Ruiz
,
A.
Navarro
, and
E. M.
García-Frutos
, “
Synthesis and photophysical studies of an indigo derivative: N-octyl-7,7′-diazaindigo
,”
RSC Adv.
10
(
69
),
42014
42020
(
2020
).
58.
F.
Zhao
,
Q.
Li
,
K.
Han
, and
T.
Lian
, “
Mechanism of efficient viologen radical generation by ultrafast electron transfer from CdS quantum dots
,”
J. Phys. Chem. C
122
(
30
),
17136
17142
(
2018
).
59.
A. N.
Yadav
,
A. K.
Singh
,
D.
Chauhan
,
P. R.
Solanki
,
P.
Kumar
, and
K.
Singh
, “
Evaluation of dopant energy and Stokes shift in Cu-doped CdS quantum dots: Via spectro-electrochemical probing
,”
New J. Chem.
44
(
32
),
13529
13533
(
2020
).
You do not currently have access to this content.