Electron–phonon coupling is an important energy transfer mechanism in solids after ultrafast laser excitation. In this study, we present an extreme ultraviolet (EUV) and infrared (IR) pump-probe photoemission experiment to investigate the electron–phonon coupling in nonequilibrium gold. The energy of IR-laser-emitted photoelectrons is shifted due to the EUV photoemission and oscillates with a 4THz frequency. Such oscillation is considered as the effective excitation of the longitudinal acoustic phonon mode in gold through the spectral-dependent electron–phonon coupling. Our study showcases the capability of time-resolved photoemission electron microscopy to monitor the non-equilibrium lattice vibrations with ultrahigh spatial and temporal resolution.

1.
F.
Caruso
and
D.
Novko
, “
Ultrafast dynamics of electrons and phonons: From the two-temperature model to the time-dependent Boltzmann equation
,”
Adv. Phys.: X
7
,
2095925
(
2022
).
2.
A.
de la Torre
,
D. M.
Kennes
,
M.
Claassen
,
S.
Gerber
,
J. W.
McIver
, and
M. A.
Sentef
, “
Colloquium: Nonthermal pathways to ultrafast control in quantum materials
,”
Rev. Mod. Phys.
93
,
041002
(
2021
).
3.
B. N.
Mironov
,
V. O.
Kompanets
,
S. A.
Aseev
,
A. A.
Ischenko
,
I. V.
Kochikov
,
O. V.
Misochko
,
S. V.
Chekalin
, and
E. A.
Ryabov
, “
Observation of coherent optical phonons excited by femtosecond laser radiation in Sb films by ultrafast electron diffraction method
,”
J. Exp. Theor. Phys.
124
,
422
428
(
2017
).
4.
N.
Medvedev
,
Z.
Li
, and
B.
Ziaja
, “
Thermal and nonthermal melting of silicon under femtosecond x-ray irradiation
,”
Phys. Rev. B
91
,
054113
(
2015
).
5.
S.
Gerber
,
S.-L.
Yang
,
D.
Zhu
,
H.
Soifer
,
J.
Sobota
,
S.
Rebec
,
J.
Lee
,
T.
Jia
,
B.
Moritz
,
C.
Jia
et al, “
Femtosecond electron-phonon lock-in by photoemission and x-ray free-electron laser
,”
Science
357
,
71
75
(
2017
).
6.
A.
Zong
,
A.
Kogar
,
Y.-Q.
Bie
,
T.
Rohwer
,
C.
Lee
,
E.
Baldini
,
E.
Ergeçen
,
M. B.
Yilmaz
,
B.
Freelon
,
E. J.
Sie
et al, “
Evidence for topological defects in a photoinduced phase transition
,”
Nat. Phys.
15
,
27
31
(
2019
).
7.
Y.
Zhang
,
X.
Shi
,
W.
You
,
Z.
Tao
,
Y.
Zhong
,
F.
Cheenicode Kabeer
,
P.
Maldonado
,
P. M.
Oppeneer
,
M.
Bauer
,
K.
Rossnagel
et al, “
Coherent modulation of the electron temperature and electron–phonon couplings in a 2D material
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
8788
8793
(
2020
).
8.
E.
Beaurepaire
,
J.-C.
Merle
,
A.
Daunois
, and
J.-Y.
Bigot
, “
Ultrafast spin dynamics in ferromagnetic nickel
,”
Phys. Rev. Lett.
76
,
4250
4253
(
1996
).
9.
B.
Koopmans
,
G.
Malinowski
,
F.
Dalla Longa
,
D.
Steiauf
,
M.
Fähnle
,
T.
Roth
,
M.
Cinchetti
, and
M.
Aeschlimann
, “
Explaining the paradoxical diversity of ultrafast laser-induced demagnetization
,”
Nat. Mater.
9
,
259
265
(
2010
).
10.
P. B.
Allen
, “
Theory of thermal relaxation of electrons in metals
,”
Phys. Rev. Lett.
59
,
1460
1463
(
1987
).
11.
L.
Waldecker
,
R.
Bertoni
,
R.
Ernstorfer
, and
J.
Vorberger
, “
Electron-phonon coupling and energy flow in a simple metal beyond the two-temperature approximation
,”
Phys. Rev. X
6
,
021003
(
2016
).
12.
P.
Maldonado
,
T.
Chase
,
A. H.
Reid
,
X.
Shen
,
R. K.
Li
,
K.
Carva
,
T.
Payer
,
M.
Horn von Hoegen
,
K.
Sokolowski-Tinten
,
X. J.
Wang
,
P. M.
Oppeneer
, and
H. A.
Dürr
, “
Tracking the ultrafast nonequilibrium energy flow between electronic and lattice degrees of freedom in crystalline nickel
,”
Phys. Rev. B
101
,
100302
(
2020
).
13.
A.
Giri
,
M. V.
Tokina
,
O. V.
Prezhdo
, and
P. E.
Hopkins
, “
Electron–phonon coupling and related transport properties of metals and intermetallic alloys from first principles
,”
Mater. Today Phys.
12
,
100175
(
2020
).
14.
F.
Marsiglio
, “
Eliashberg theory: A short review
,”
Ann. Phys.
417
,
168102
(
2020
), part of the Special Issue: Eliashberg theory at 60: Strong-coupling superconductivity and beyond.
15.
J.
Zhang
,
R.
Qin
,
W.
Zhu
, and
J.
Vorberger
, “
Energy relaxation and electron-phonon coupling in laser-excited metals
,”
Materials
15
,
1902
(
2022
).
16.
H. J.
Zeiger
,
J.
Vidal
,
T. K.
Cheng
,
E. P.
Ippen
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
, “
Theory for displacive excitation of coherent phonons
,”
Phys. Rev. B
45
,
768
778
(
1992
).
17.
H. D.
Boggiano
,
R.
Berté
,
A. F.
Scarpettini
,
E.
Cortés
,
S. A.
Maier
, and
A. V.
Bragas
, “
Determination of nanoscale mechanical properties of polymers via plasmonic nanoantennas
,”
ACS Photonics
7
,
1403
1409
(
2020
).
18.
E.
Papalazarou
,
J.
Faure
,
J.
Mauchain
,
M.
Marsi
,
A.
Taleb-Ibrahimi
,
I.
Reshetnyak
,
A.
van Roekeghem
,
I.
Timrov
,
N.
Vast
,
B.
Arnaud
, and
L.
Perfetti
, “
Coherent phonon coupling to individual Bloch states in photoexcited bismuth
,”
Phys. Rev. Lett.
108
,
256808
(
2012
).
19.
O.
Neufeld
,
J.
Zhang
,
U.
De Giovannini
,
H.
Hübener
, and
A.
Rubio
, “
Probing phonon dynamics with multidimensional high harmonic carrier-envelope-phase spectroscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2204219119
(
2022
).
20.
Y.
Li
,
W.
Liu
,
Y.
Wang
,
Z.
Xue
,
Y.-C.
Leng
,
A.
Hu
,
H.
Yang
,
P.-H.
Tan
,
Y.
Liu
,
H.
Misawa
et al, “
Ultrafast electron cooling and decay in monolayer WS2 revealed by time- and energy-resolved photoemission electron microscopy
,”
Nano Lett.
20
,
3747
3753
(
2020
).
21.
V.
Tiwari
, “
Multidimensional electronic spectroscopy in high-definition—Combining spectral, temporal, and spatial resolutions
,”
J. Chem. Phys.
154
,
230901
(
2021
).
22.
J.
Tang
,
Y.
Li
,
S.
Ye
,
P.
Jiang
,
Z.
Xue
,
X.
Li
,
X.
Lyu
,
Q.
Liu
,
S.
Chu
,
H.
Yang
,
C.
Wu
,
X.
Hu
,
Y.
Gao
,
S.
Wang
,
Q.
Sun
,
G.
Lu
, and
Q.
Gong
, “
Direct hot-electron transfer at the Au nanoparticle/monolayer transition-metal dichalcogenide interface observed with ultrahigh spatiotemporal resolution
,”
Nano Lett.
24
,
2931
2938
(
2024
).
23.
Y.
Li
,
Q.
Sun
,
S.
Zu
,
X.
Shi
,
Y.
Liu
,
X.
Hu
,
K.
Ueno
,
Q.
Gong
, and
H.
Misawa
, “
Correlation between near-field enhancement and dephasing time in plasmonic dimers
,”
Phys. Rev. Lett.
124
,
163901
(
2020
).
24.
S. J.
Peppernick
,
A. G.
Joly
,
K. M.
Beck
, and
W. P.
Hess
, “
Plasmon-induced optical field enhancement studied by correlated scanning and photoemission electron microscopy
,”
J. Chem. Phys.
138
,
154701
(
2013
).
25.
P.
Melchior
,
D.
Kilbane
,
E. J.
Vesseur
,
A.
Polman
, and
M.
Aeschlimann
, “
Photoelectron imaging of modal interference in plasmonic whispering gallery cavities
,”
Opt. Express
23
,
31619
31626
(
2015
).
26.
Y.
Li
,
P.
Jiang
,
X.
Lyu
,
X.
Li
,
H.
Qi
,
J.
Tang
,
Z.
Xue
,
H.
Yang
,
G.
Lu
,
Q.
Sun
et al, “
Revealing low-loss dielectric near-field modes of hexagonal boron nitride by photoemission electron microscopy
,”
Nat. Commun.
14
,
4837
(
2023
).
27.
Y.
Li
,
P.
Jiang
,
X.
Liu
,
H.
Wu
,
X.
Lyu
,
X.
Li
,
H.
Lin
,
J.
Tang
,
Q.
Lyu
,
H.
Yang
et al, “
Defect-assisted photoemission in the hBN and TMDs/hBN heterostructures
,”
J. Phys. Chem. C
128
,
4286
(
2024
).
28.
W.
Zheng
,
P.
Jiang
,
L.
Zhang
,
Y.
Wang
,
Q.
Sun
,
Y.
Liu
,
Q.
Gong
, and
C.
Wu
, “
Ultrafast extreme ultraviolet photoemission electron microscope
,”
Rev. Sci. Instrum.
92
,
043709
(
2021
).
29.
M.
Ferray
,
A.
L’Huillier
,
X. F.
Li
,
L. A.
Lompre
,
G.
Mainfray
, and
C.
Manus
, “
Multiple-harmonic conversion of 1064 nm radiation in rare gases
,”
J. Phys. B: At., Mol. Opt. Phys.
21
,
L31
(
1988
).
30.
P. B.
Corkum
, “
Plasma perspective on strong field multiphoton ionization
,”
Phys. Rev. Lett.
71
,
1994
1997
(
1993
).
31.
P. B.
Corkum
and
F.
Krausz
, “
Attosecond science
,”
Nat. Phys.
3
,
381
387
(
2007
).
32.
J.-N.
Vigneau
,
T.-T.
Nguyen-Dang
,
E.
Charron
, and
O.
Atabek
, “
Strong-field molecular ionization beyond the single active electron approximation
,”
J. Chem. Phys.
157
,
134304
(
2022
).
33.
A.
Mikkelsen
,
J.
Schwenke
,
T.
Fordell
,
G.
Luo
,
K.
Klünder
,
E.
Hilner
,
N.
Anttu
,
A.
Zakharov
,
E.
Lundgren
,
J.
Mauritsson
et al, “
Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains
,”
Rev. Sci. Instrum.
80
,
123703
(
2009
).
34.
S. H.
Chew
,
F.
Süaßmnn
,
C.
Späth
,
A.
Wirth
,
J.
Schmidt
,
S.
Zherebtsov
,
A.
Guggenmos
,
A.
Oelsner
,
N.
Weber
,
J.
Kapaldo
,
A.
Gliserin
et al, “
Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses
,”
Appl. Phys. Lett.
100
,
051904
(
2012
).
35.
P.
Jiang
,
W.
Zheng
,
X.
Li
,
L.
Zhang
,
Y.
Liu
,
Y.
Wang
,
Y.
Li
,
Y.
Gao
,
H.
Yang
,
Y.
Liu
,
Q.
Gong
, and
C.
Wu
, “
Imaging and controlling ultrafast electron pulses emitted from plasmonic nanostructures
,”
Nano Lett.
23
,
7327
7333
(
2023
).
36.
A.
Mellor
,
A.
Wilson
,
C. L.
Pang
,
C. M.
Yim
,
F.
Maccherozzi
,
S. S.
Dhesi
,
C. A.
Muryn
,
H.
Idriss
, and
G.
Thornton
, “
Photoemission core level binding energies from multiple sized nanoparticles on the same support: TiO2(110)/Au
,”
J. Chem. Phys.
152
,
024709
(
2020
).
37.
R. C.
Word
,
J. P. S.
Fitzgerald
, and
R.
Könenkamp
, “
Electron emission in the near-field of surface plasmons
,”
Surf. Sci.
607
,
148
152
(
2013
), part of the Special Issue: Surface science under environmental conditions.
38.
O.
Benka
and
P.
Zeppenfeld
, “
Secondary electron images obtained with a standard photoelectron emission microscope set-up
,”
J. Phys.: Condens. Matter
17
,
S1311
(
2005
).
39.
M.
Lehr
,
B.
Foerster
,
M.
Schmitt
,
K.
Krüger
,
C.
Sönnichsen
,
G.
Schönhense
, and
H.-J.
Elmers
, “
Momentum distribution of electrons emitted from resonantly excited individual gold nanorods
,”
Nano Lett.
17
,
6606
6612
(
2017
).
40.
T. O.
Menteş
and
A.
Locatelli
, “
Angle-resolved X-ray photoemission electron microscopy
,”
J. Electron Spectrosc. Relat. Phenom.
185
,
323
329
(
2012
).
41.
M.
Lavayssière
,
O.
Renault
,
D.
Mariolle
,
M.
Veillerot
,
J. P.
Barnes
,
J. M.
Hartmann
,
J.
Leroy
, and
N.
Barrett
, “
Photoemission induced bias in two-dimensional silicon pn junctions
,”
Appl. Phys. Lett.
99
,
202107
(
2011
).
42.
A.
Januszko
and
S. K.
Bose
, “
Phonon spectra and temperature variation of bulk properties of Cu, Ag, Au and Pt using Sutton–Chen and modified Sutton–Chen potentials
,”
J. Phys. Chem. Solids
82
,
67
75
(
2015
).
43.
U.
Shymanovich
,
M.
Nicoul
,
W.
Lu
,
A.
Tarasevitch
,
M.
Kammler
,
M.
Horn von Hoegen
,
D.
von der Linde
, and
K.
Sokolowski-Tinten
, “
Coherent acoustic and optical phonons in laser-excited solids studied by ultrafast time-resolved X-ray diffraction
,”
AIP Conf. Proc.
1278
,
558
566
(
2010
).
44.
S. L.
Johnson
,
M.
Savoini
,
P.
Beaud
,
G.
Ingold
,
U.
Staub
,
F.
Carbone
,
L.
Castiglioni
,
M.
Hengsberger
, and
J.
Osterwalder
, “
Watching ultrafast responses of structure and magnetism in condensed matter with momentum-resolved probes
,”
Struct. Dyn.
4
,
061506
(
2017
).
45.
X.
Tang
,
C. W.
Li
, and
B.
Fultz
, “
Anharmonicity-induced phonon broadening in aluminum at high temperatures
,”
Phys. Rev. B
82
,
184301
(
2010
).
You do not currently have access to this content.