Conventional molecular dynamics (MD) simulations struggle when simulating particles with steeply varying interaction potentials due to the need to use a very short time step. Here, we demonstrate that an event-driven Monte Carlo (EDMC) approach was first introduced by Peters and de With [Phys. Rev. E 85, 026703 (2012)] and represents an excellent substitute for MD in the canonical ensemble. In addition to correctly reproducing the static thermodynamic properties of the system, the EDMC method closely mimics the dynamics of systems of particles interacting via the steeply repulsive Weeks–Chandler–Andersen (WCA) potential. In comparison to time-driven MD simulations, EDMC runs faster by over an order of magnitude at sufficiently low temperatures. Moreover, the lack of a finite time step in EDMC circumvents the need to trade accuracy against the simulation speed associated with the choice of time step in MD. We showcase the usefulness of this model to explore the phase behavior of the WCA model at extremely low temperatures and to demonstrate that spontaneous nucleation and growth of the Laves phases are possible at temperatures significantly lower than previously reported.

1.
C. P.
Royall
,
P.
Charbonneau
,
M.
Dijkstra
,
J.
Russo
,
F.
Smallenburg
,
T.
Speck
, and
C.
Valeriani
, arXiv:2305.02452 (
2023
).
2.
B. J.
Alder
and
T. E.
Wainwright
,
J. Chem. Phys.
31
,
459
(
1959
).
3.
D. C.
Rapaport
,
Prog. Theor. Phys. Suppl.
178
,
5
(
2009
).
4.
M. N.
Bannerman
,
R.
Sargant
, and
L.
Lue
,
J. Comput. Chem.
32
,
3329
(
2011
).
5.
C.
De Michele
,
Comput. Phys. Commun.
182
,
1846
(
2011
).
7.
M.
Bannerman
,
J.
Magee
, and
L.
Lue
,
Phys. Rev. E
80
,
021801
(
2009
).
8.
T.
Dotera
,
T.
Oshiro
, and
P.
Ziherl
,
Nature
506
,
208
(
2014
).
9.
V. R.
Akkaya
,
I.
Kandemir
et al,
Math Probl. Eng.
2015
,
1
.
10.
I. E.
Paganini
,
C.
Pastorino
, and
I.
Urrutia
,
J. Chem. Phys.
142
,
244707
(
2015
).
11.
A.
Plati
,
R.
Maire
,
E.
Fayen
,
F.
Boulogne
,
F.
Restagno
,
F.
Smallenburg
, and
G.
Foffi
,
Nat. Phys.
20
,
465
471
(
2024
).
12.
C.
Thomson
,
L.
Lue
, and
M. N.
Bannerman
,
J. Chem. Phys.
140
,
034105
(
2014
).
13.
S.
Ucyigitler
,
M. C.
Camurdan
, and
J. R.
Elliott
,
Ind. Eng. Chem. Res.
51
,
6219
(
2012
).
14.
E. A. J. F.
Peters
and
G.
de With
,
Phys. Rev. E
85
,
026703
(
2012
).
15.
E. P.
Bernard
,
W.
Krauth
, and
D. B.
Wilson
,
Phys. Rev. E
80
,
056704
(
2009
).
16.
E. P.
Bernard
and
W.
Krauth
,
Phys. Rev. E
86
,
017701
(
2012
).
17.
M.
Michel
,
S. C.
Kapfer
, and
W.
Krauth
,
J. Chem. Phys.
140
,
054116
(
2014
).
18.
S. C.
Kapfer
and
W.
Krauth
,
Phys. Rev. E
94
,
031302
(
2016
).
19.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
20.
E.
Attia
,
J. C.
Dyre
, and
U. R.
Pedersen
,
J. Chem. Phys.
157
,
034502
(
2022
).
21.
T.
Dasgupta
,
G. M.
Coli
, and
M.
Dijkstra
,
ACS Nano
14
,
3957
(
2020
).
22.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Elsevier
,
2023
).
23.
M.
Klement
and
M.
Engel
,
J. Chem. Phys.
150
,
174108
(
2019
).
24.
D.
Blackman
and
S.
Vigna
,
ACM Trans. Math. Software
47
,
1
(
2021
).
25.
J. H.
Ahrens
and
U.
Dieter
,
Commun. ACM
15
,
873
(
1972
).
26.
L.
Devroye
,
Non-Uniform Random Variate Generation
(
Springer New York
,
1986
), pp.
379
484
.
27.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
In ’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
et al,
Comput. Phys. Commun.
271
,
108171
(
2022
).
28.
A.
Ahmed
and
R. J.
Sadus
,
Phys. Rev. E
80
,
061101
(
2009
).
29.
F.
Smallenburg
,
G.
Del Monte
,
M.
de Jager
, and
L.
Filion
,
J. Chem. Phys.
160
,
224109
(
2024
).
30.
L.
Filion
,
R.
Ni
,
D.
Frenkel
, and
M.
Dijkstra
,
J. Chem. Phys.
134
,
134901
(
2011
).
31.
A.-P.
Hynninen
,
L.
Filion
, and
M.
Dijkstra
,
J. Chem. Phys.
131
,
064902
(
2009
).
32.
P. K.
Bommineni
,
M.
Klement
, and
M.
Engel
,
Phys. Rev. Lett.
124
,
218003
(
2020
).
33.
S.
Marín-Aguilar
,
H. H.
Wensink
,
G.
Foffi
, and
F.
Smallenburg
,
Phys. Rev. Lett.
124
,
208005
(
2020
).
34.
E.
Boattini
,
M.
Ram
,
F.
Smallenburg
, and
L.
Filion
,
Mol. Phys.
116
,
3066
(
2018
).
35.
W.
Lechner
and
C.
Dellago
,
J. Chem. Phys.
129
,
114707
(
2008
).
36.
G.
Tartero
and
W.
Krauth
,
Am. J. Phys.
92
,
65
(
2024
).
37.
L.
Hernández de la Peña
,
R.
van Zon
,
J.
Schofield
, and
S. B.
Opps
,
J. Chem. Phys.
126
,
074105
(
2007
).
38.
S.
Miller
and
S.
Luding
,
J. Comput. Phys.
193
,
306
(
2004
).
39.
M. A.
Khan
and
M. C.
Herbordt
,
J. Comput. Phys.
230
,
6563
(
2011
).
40.
A.
Castagnède
,
L.
Filion
, and
F.
Smallenburg
(
2024
). “
Fast event-driven simulations for soft spheres: from dynamics to Laves phase nucleation
,” [Data set]. Zenodo. https://doi.org/10.5281/zenodo.12608286
You do not currently have access to this content.