Manganese–rhodium (Mn–Rh) nanoparticles have emerged as a promising candidate for catalytic applications in the production of syngas, a critical precursor for a wide range of industrial processes. This study employs a comprehensive, theoretical, and computational approach to investigate the structural and electronic properties of Mn–Rh nanoparticles, with a specific focus on their interaction with titanium oxide (TiO2) surfaces and their potential as catalysts for syngas reactions. The density functional theory calculations are employed to explore the adsorption behavior of Mn–Rh nanoparticles on TiO2 surfaces. By analyzing the adsorption energies, geometries, and electronic structure at the nanoscale interface, we provide valuable insights into the stability and reactivity of Mn–Rh nanoparticles when immobilized on TiO2 supports. Furthermore, the catalytic performance of Mn–Rh nanoparticles in syngas production is thoroughly examined. Through detailed reaction mechanism studies and kinetic analysis, we elucidate the role of Mn and Rh in promoting syngas generation via carbon dioxide reforming and partial oxidation reactions. The findings demonstrate the potential of Mn–Rh nanoparticles as efficient catalysts for these crucial syngas reactions. This research work not only enhances our understanding of the fundamental properties of Mn–Rh nanoparticles but also highlights their application as catalysts for sustainable and industrially significant syngas production.

1.
A.
Selmani
,
D.
Kovacevic
, and
K.
Bohinc
, “
Nanoparticles: From synthesis to applications and beyond
,”
Adv. Colloid Interface Sci.
303
,
102640
(
2022
).
2.
Y.
Ma
,
G.
Nagy
,
M.
Siebenburger
,
R.
Kaur
,
K. M.
Dooley
, and
B.
Bharti
, “
Adsorption and catalytic activity of gold nanoparticles in mesoporous silica: Effect of pore size and dispersion salinity
,”
J. Phys. Chem. C
126
,
2531
2541
(
2022
).
3.
K.
Bourikas
,
C.
Kordulis
, and
A.
Lycourghiotis
, “
Titanium dioxide (anatase and rutile): Surface chemistry, liquid–solid interface chemistry, and scientific synthesis of supported catalysts
,”
Chem. Rev.
114
,
9754
9823
(
2014
).
4.
J. J.
Chen
,
X. N.
Li
,
Q. Y.
Liu
,
G. P.
Wei
,
Y.
Yang
,
Z. Y.
Li
, and
S. G.
He
, “
Water gas shift reaction catalyzed by rhodium–manganese oxide cluster anions
,”
J. Phys. Chem. Lett.
12
,
8513
8520
(
2021
).
5.
Q.
Feng
,
H.
Kanoh
, and
K.
Ooi
, “
Manganese oxide porous crystals
,”
J. Mater. Chem.
9
,
319
333
(
1999
).
6.
N.
Sarki
,
A.
Narani
,
G.
Naik
,
D.
Tripathi
,
S. L.
Jain
, and
K.
Natte
, “
Biowaste carbon supported manganese nanoparticles as an active catalyst for the selective hydrogenation of bio-based aldehydes
,”
Catal. Today
408
,
127
138
(
2023
).
7.
X.
Chen
,
Y.
Chen
,
C.
Song
,
P.
Ji
,
N.
Wang
,
W.
Wang
, and
L.
Cui
, “
Recent advances in supported metal catalysts and oxide catalysts for the reverse water-gas shift reaction
,”
Front. Chem.
8
,
709
(
2020
).
8.
J. C.
Matsubu
,
V. N.
Yang
, and
P.
Christopher
, “
Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity
,”
J. Am. Chem. Soc.
137
,
3076
3084
(
2015
).
9.
Y.
Zhu
,
S. F.
Yuk
,
J.
Zheng
,
M. T.
Nguyen
,
M. S.
Lee
,
J.
Szanyi
,
L.
Kovarik
,
Z.
Zhu
,
M.
Balasubramanian
,
V. A.
Glezakou
,
J. L.
Fulton
,
J. A.
Lercher
,
R.
Rousseau
, and
O. Y.
Gutiérrez
,
J. Am. Chem. Soc.
143
,
5540
5549
(
2021
).
10.
J. J.
Mortensen
,
L. B.
Hansen
, and
K. W.
Jacobsen
, “
Real-space grid implementation of the projector augmented wave method
,”
Phys. Rev. B
71
,
035109
(
2005
).
11.
J.
Enkovaara
,
C.
Rostgaard
, and
J. J.
Mortensen
, “
Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method
,”
J. Phys.: Condens. Matter
22
,
253202
(
2010
).
12.
S. R.
Bahn
and
K. W.
Jacobsen
, “
An object-oriented scripting interface to a legacy electronic structure code
,”
Comput. Sci. Eng.
4
,
56
66
(
2002
).
13.
M.
Ernzerhof
and
G. E.
Scuseria
, “
Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional
,”
J. Chem. Phys.
110
,
5029
5036
(
1999
).
14.
J.
Zhang
and
M.
Dolg
, “
Global optimization of clusters of rigid molecules using the artificial bee colony algorithm
,”
Phys. Chem. Chem. Phys.
18
,
3003
3010
(
2016
).
15.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
G.
Ceder
, and
K. A.
Persson
, “
Commentary: The materials project: A materials genome approach to accelerating materials innovation
,”
APL Mater.
1
,
011002
(
2013
).
16.
D.
Hobbs
,
J.
Hafner
, and
D.
Spisak
, “
Understanding the complex metallic element Mn. I. Crystalline and noncollinear magnetic structure of α-Mn
,”
Phys. Rev. B
68
,
014407
(
2003
).
17.
P.
Kainzbauer
,
M. C. J.
Marker
, and
K. W.
Richter
, “
Reassessment of the binary Mn–Rh phase diagram and experimental investigations of the ternary Bi–Mn–Rh system
,”
J. Phase Equilib. Diffus.
41
,
282
298
(
2020
).
18.
C. J.
Bartel
, “
Review of computational approaches to predict the thermodynamic stability of inorganic solids
,”
J. Mater. Sci.
57
,
10475
10498
(
2022
).
19.
R. F. W.
Bader
,
Atoms in Molecules—A Quantum Theory
(
Oxford University Press
,
Oxford
,
1990
).
20.
E.
Araujo-Lopez
,
L. A.
Varilla
,
N.
Seriani
, and
J. A.
Montoya
, “
TiO2 anatase’s bulk and (001) surface, structural and electronic properties: A DFT study on the importance of Hubbard and van der Waals contributions
,”
Surf. Sci.
653
,
187
196
(
2016
).
21.
N.
Martsinovich
and
A.
Troisi
, “
How TiO2 crystallographic surfaces influence charge injection rates from a chemisorbed dye sensitiser
,”
Phys. Chem. Chem. Phys.
14
,
13392
13401
(
2012
).
22.
M.
Lazzeri
,
A.
Vittadini
, and
A.
Selloni
, “
Structure and energetics of stoichometric TiO2 anatase surfaces
,”
Phys. Rev. B
63
,
155409
(
2001
);
23.
C.
Dette
,
M. A.
Perez-Osorio
,
C. S.
Kley
,
P.
Punke
,
C. E.
Patrick
,
P.
Jacobson
,
F.
Giustino
,
S. J.
Jung
, and
K.
Kern
, “
TiO2 anatase with a bandgap in the visible región
,”
Nano Lett.
14
,
6533
6538
(
2014
).
24.
Y.
Han
,
C. J.
Liu
, and
Q.
Ge
, “
Interaction of Pt clusters with the anatase TiO2(101) surface: A first principles study
,”
J. Phys. Chem. B
110
,
7463
7472
(
2006
).
You do not currently have access to this content.