Thermal fluctuations are ubiquitous in mesoscopic and microscopic systems. Take nematic liquid crystals (LCs) as an example; their director fluctuations can strongly scatter light and give rise to random motions and rotations of topological defects and solid inclusions. These stochastic processes contain important information about the material properties of the LC and dictate the transport of the immersed colloidal particles. However, modeling thermal fluctuations of the nematic field remains challenging. Here, we introduce a new Monte Carlo simulation method, namely the Fourier-space Monte Carlo (FSMC) method, which is based on the Oseen–Frank elastic distortion energy model. This method accurately models the thermal fluctuations of a nematic LC’s director field. In contrast to the traditional real-space MC method, which perturbs the director locally, the FSMC method samples different eigenmodes of the director distortions in the Fourier space, aligning with the equipartition theorem. We apply FSMC to study defect fluctuations and trajectories in a two-dimensional nematic LC confined to various geometries. Our results show that FSMC can effectively sample degenerate defect configurations and reproduce long-range elastic interactions between defects. In addition, we conduct three-dimensional molecular dynamics simulations using a coarse-grained Gay–Berne potential, which corroborates the findings from FSMC. Taken together, we have developed a new Monte Carlo method to accurately model thermal fluctuations in nematic LCs, which can be useful for searching global free-energy minimum states in nematic, smectic, and other LC mesophases and can also be helpful in modeling the thermal motions of defects and inclusions in LCs.

1.
N. A.
Lockwood
,
J. C.
Mohr
,
L.
Ji
,
C. J.
Murphy
,
S. P.
Palecek
,
J.
de Pablo
, and
N. L.
Abbott
,
Adv. Funct. Mater.
16
,
618
(
2006
).
2.
I.-H.
Lin
,
D. S.
Miller
,
P. J.
Bertics
,
C. J.
Murphy
,
J. J.
de Pablo
, and
N. L.
Abbott
,
Science
332
,
1297
(
2011
).
3.
4.
D.-K.
Yang
and
S.-T.
Wu
,
Fundamentals of Liquid Crystal Devices
(
John Wiley & Sons
,
2014
).
5.
A. D.
Ford
,
S. M.
Morris
, and
H. J.
Coles
,
Mater. Today
9
,
36
(
2006
).
6.
A.
Sengupta
,
S.
Herminghaus
, and
C.
Bahr
,
Liq. Cryst. Rev.
2
,
73
(
2014
).
7.
A.
Sengupta
,
U.
Tkalec
,
M.
Ravnik
,
J. M.
Yeomans
,
C.
Bahr
, and
S.
Herminghaus
,
Phys. Rev. Lett.
110
,
048303
(
2013
).
8.
P.
Lv
,
X.
Yang
,
H. K.
Bisoyi
,
H.
Zeng
,
X.
Zhang
,
Y.
Chen
,
P.
Xue
,
S.
Shi
,
A.
Priimagi
,
L.
Wang
et al,
Mater. Horiz.
8
,
2475
(
2021
).
9.
M.
Pilz da Cunha
,
M. G.
Debije
, and
A. P.
Schenning
,
Chem. Soc. Rev.
49
,
6568
(
2020
).
10.
Y.-K.
Kim
,
X.
Wang
,
P.
Mondkar
,
E.
Bukusoglu
, and
N. L.
Abbott
,
Nature
557
,
539
(
2018
).
11.
R.
Zhang
,
A.
Mozaffari
, and
J. J.
de Pablo
,
Nat. Rev. Mater.
6
,
437
(
2021
).
12.
P. A.
Lebwohl
and
G.
Lasher
,
Phys. Rev. A
6
,
426
(
1972
).
13.
M.
Ravnik
and
S.
Žumer
,
Liq. Cryst.
36
,
1201
(
2009
).
14.
I. I.
Smalyukh
,
S.
Shiyanovskii
, and
O.
Lavrentovich
,
Chem. Phys. Lett.
336
,
88
(
2001
).
15.
E.
Kreyszig
,
Advanced Engineering Mathematics
, 10th ed. (John Wiley & Sons, New York, 2010), ISBN: 9780470458365, https://books.google.com.hk/books?id=UnN8DpXI74EC.
16.
F. C.
Frank
,
Discuss. Faraday Soc.
25
,
19
(
1958
).
17.
P.-G.
De Gennes
and
J.
Prost
,
The Physics of Liquid Crystals
(
Oxford University Press
,
1993
), Vol.
83
.
18.
N. J.
Mottram
and
C. J.
Newton
, arXiv:1409.3542 (
2014
).
19.
X.
Wang
,
J.
Jiang
,
J.
Chen
,
Z.
Asilehan
,
W.
Tang
,
C.
Peng
, and
R.
Zhang
,
Nat. Commun.
15
,
1655
(
2024
).
20.
J.
Jiang
,
X.
Wang
,
O. I.
Akomolafe
,
W.
Tang
,
Z.
Asilehan
,
K.
Ranabhat
,
R.
Zhang
, and
C.
Peng
,
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2221718120
(
2023
).
21.
R.
Zhang
,
T.
Roberts
,
I. S.
Aranson
, and
J. J.
De Pablo
,
J. Chem. Phys.
144
,
084905
(
2016
).
22.
J.
Doane
,
N.
Vaz
,
B.-G.
Wu
, and
S.
Žumer
,
Appl. Phys. Lett.
48
,
269
(
1986
).
23.
P.
De Gennes
,
Mol. Cryst. Liq. Cryst.
12
,
193
(
1971
).
24.
T.
Moses
,
J.
Reeves
, and
P.
Pirondi
,
Am. J. Phys.
75
,
220
(
2007
).
25.
I. D.
Olenik
,
M.
Jazbinšek
, and
M.
Čopič
,
Phys. Rev. Lett.
82
,
2103
(
1999
).
26.
P. J. L.
Masurier
,
G.
Luckhurst
, and
G.
Saielli
,
Liq. Cryst.
28
,
769
(
2001
).
28.
J.
Pišljar
,
A.
Nych
,
U.
Ognysta
,
A.
Petelin
,
S.
Kralj
, and
I.
Muševič
,
Phys. Rev. Lett.
132
,
178101
(
2024
).
29.
A.
Nych
,
J.-i.
Fukuda
,
U.
Ognysta
,
S.
Žumer
, and
I.
Muševič
,
Nat. Phys.
13
,
1215
(
2017
).
30.
A.
Mertelj
and
M.
Čopič
,
Phys. Rev. E
69
,
021711
(
2004
).
31.
C. D.
Muzny
and
N. A.
Clark
,
Phys. Rev. Lett.
68
,
804
(
1992
).
32.
L.
Bonn
,
A.
Ardaševa
,
R.
Mueller
,
T. N.
Shendruk
, and
A.
Doostmohammadi
,
Phys. Rev. E
106
,
044706
(
2022
).
33.
T.
Kozhukhov
and
T. N.
Shendruk
,
Sci. Adv.
8
,
eabo5788
(
2022
).
34.
E.
Bertin
,
H.
Chaté
,
F.
Ginelli
,
S.
Mishra
,
A.
Peshkov
, and
S.
Ramaswamy
,
New J. Phys.
15
,
085032
(
2013
).
35.
S.
Ngo
,
A.
Peshkov
,
I. S.
Aranson
,
E.
Bertin
,
F.
Ginelli
, and
H.
Chaté
,
Phys. Rev. Lett.
113
,
038302
(
2014
).
36.
P.
Ziherl
,
F. K. P.
Haddadan
,
R.
Podgornik
, and
S.
Žumer
,
Phys. Rev. E
61
,
5361
(
2000
).
37.
P.
Ziherl
,
S.
Žumer
, and
R.
Podgornik
,
Braz. J. Phys.
28
,
267
(
1998
).
38.
T.
Turiv
,
I.
Lazo
,
A.
Brodin
,
B. I.
Lev
,
V.
Reiffenrath
,
V. G.
Nazarenko
, and
O. D.
Lavrentovich
,
Science
342
,
1351
(
2013
).
39.
S.
Mandal
and
M. G.
Mazza
,
Phys. Rev. E
99
,
063319
(
2019
).
40.
L. C.
Head
,
Y. A. G.
Fosado
,
D.
Mareduzzo
, and
T. N.
Shendruk
,
Soft Matter
20
,
7157
(
2024
).
41.
A. K.
Bhattacharjee
,
G. I.
Menon
, and
R.
Adhikari
,
J. Chem. Phys.
133
,
044112
(
2010
).
42.
O.
Henrich
,
K.
Stratford
,
D.
Marenduzzo
, and
M. E.
Cates
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
13212
(
2010
).
43.
G. R.
Luckhurst
and
G.
Saielli
,
Mol. Cryst. Liq. Cryst.
395
,
183
(
2003
).
44.
C.
Chiccoli
,
P.
Pasini
,
A.
Šarlah
,
C.
Zannoni
, and
S.
Žumer
,
Phys. Rev. E
67
,
050703
(
2003
).
45.
R.
Berardi
et al,
J. Chem. Soc., Faraday Trans.
89
,
4069
(
1993
).
46.
T.
Gruhn
and
S.
Hess
,
Z. Naturforsch. A
51
,
1
(
1996
).
47.
R.
Ruhwandl
and
E.
Terentjev
,
Phys. Rev. E
56
,
5561
(
1997
).
48.
R. K.
Goyal
and
M. M.
Denn
,
Phys. Rev. E
75
,
021704
(
2007
).
49.
J.
Hobdell
and
A.
Windle
,
Liq. Cryst.
23
,
157
(
1997
).
50.
J. C.
Armas-Pérez
,
A.
Londono-Hurtado
,
O.
Guzmán
,
J. P.
Hernández-Ortiz
, and
J. J.
de Pablo
,
J. Chem. Phys.
143
,
044107
(
2015
).
51.
J. C.
Armas-Pérez
,
J. P.
Hernández-Ortiz
, and
J. J.
de Pablo
,
J. Chem. Phys.
143
,
243157
(
2015
).
52.
A.
de la Cotte
,
O.
Stenull
,
S.
Ettinger
,
P. J.
Collings
,
T. C.
Lubensky
, and
A.
Yodh
,
Phys. Rev. E
105
,
044702
(
2022
).
53.
O.
Stenull
,
A.
de la Cotte
,
S.
Ettinger
,
P. J.
Collings
,
A.
Yodh
, and
T.
Lubensky
,
Phys. Rev. E
105
,
044703
(
2022
).
54.
R. H.
Swendsen
and
J.-S.
Wang
,
Phys. Rev. Lett.
58
,
86
(
1987
).
56.
A.
Kidera
and
N.
,
J. Mol. Biol.
225
,
457
(
1992
).
57.
Q.
Yan
,
T. S.
Jain
, and
J. J.
de Pablo
,
Phys. Rev. Lett.
92
,
235701
(
2004
).
58.
T. S.
Jain
and
J. J.
de Pablo
,
J. Chem. Phys.
122
,
174515
(
2005
).
59.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
60.
R.
Zhang
,
N.
Kumar
,
J. L.
Ross
,
M. L.
Gardel
, and
J. J.
De Pablo
,
Proc. Natl. Acad. Sci. U. S. A.
115
,
E124
(
2018
).
61.
J.
Fang
,
E.
Teer
,
C. M.
Knobler
,
K.-K.
Loh
, and
J.
Rudnick
,
Phys. Rev. E
56
,
1859
(
1997
).
62.
D.
Pettey
and
T.
Lubensky
,
Phys. Rev. E
59
,
1834
(
1999
).
63.
P.
Rofouie
,
D.
Pasini
, and
A. D.
Rey
,
Soft Matter
13
,
5366
(
2017
).
64.
M. P.
Allen
,
D. J.
Tildesley
et al,
Computer Simulation of Liquids
(
Clarendon Press
,
1987
).
65.
B. J.
Berne
and
P.
Pechukas
,
J. Chem. Phys.
56
,
4213
(
1972
).
66.
J.
Gay
and
B.
Berne
,
J. Chem. Phys.
74
,
3316
(
1981
).
67.
H.
Sidky
and
J. K.
Whitmer
,
Liq. Cryst.
43
,
2285
(
2016
).
68.
X.
Tang
and
J. V.
Selinger
,
Soft Matter
13
,
5481
(
2017
).
69.
C.
Long
and
J. V.
Selinger
, “
Applications of the Peach-Koehler force in liquid crystals
,”
Liq. Cryst.
51
(6),
1005
1021
(
2024
).
70.
V.
Vitelli
and
D. R.
Nelson
,
Phys. Rev. E
70
,
051105
(
2004
).
71.
Y.
Huang
,
W.
Wang
,
J. K.
Whitmer
, and
R.
Zhang
,
Soft Matter
19
,
483
(
2023
).
72.
S.
Stallinga
,
M.
Wittebrood
,
D.
Luijendijk
, and
T.
Rasing
,
Phys. Rev. E
53
,
6085
(
1996
).
73.
P.
Ziherl
and
S.
Žumer
,
Phys. Rev. E
54
,
1592
(
1996
).
74.
M.
Vilfan
and
M.
Čopicč
,
Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A
351
,
419
(
2000
).
75.
P.
Prybytak
,
W.
Frith
, and
D.
Cleaver
,
Interface Focus
2
,
651
(
2012
).
76.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
77.
C.
Zannoni
,
Liquid Crystals and Their Computer Simulations
(
Cambridge University Press
,
2022
).
78.
K.
Schiele
and
S.
Trimper
,
Phys. Status Solidi B
118
,
267
(
1983
).
79.
I. W.
Stewart
,
The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction
(
CRC Press
,
2019
).
80.
N.
Schopohl
and
T.
Sluckin
,
Phys. Rev. Lett.
59
,
2582
(
1987
).
You do not currently have access to this content.