Methods of quantifying the electrostatics of charged interfaces are important in a range of research areas. The surface-selective nonlinear optical technique second harmonic generation (SHG) is a sensitive probe of interfacial electrostatics. Recent work has shown that detection of the SHG phase in addition to its amplitude enables direct quantification of the interfacial potential. However, the experimental challenge of directly detecting the phase interferometrically with sufficient precision and stability has led to the proposal and development of alternative techniques to recover the same information, notably through wavelength scanning or angle scanning, each of which has their own associated experimental challenges. Here, we propose a new polarization-based approach to recover the required phase information, building upon the previously established nonlinear optical null ellipsometry (NONE) technique. Although NONE directly returns only relative phase information between different tensor elements of the second-order susceptibility, it is shown that a symmetry relation that connects the tensor elements of the potential-dependent third-order susceptibility can be used to generate the absolute phase reference required to calculate the interfacial potential. The sensitivity of the technique to potential at varying surface charge densities and ionic strengths is explored by means of simulated data of the silica:water interface. The error associated with the use of the linearized Poisson–Boltzmann approximation is discussed and compared to the error associated with the precision of the measured NONE null angles. Overall, the results suggest that NONE is a promising approach for performing phase-resolved SHG based quantification of interfacial potentials that experimentally requires only the addition of standard polarization optics to the basic single-wavelength, fixed-angle SHG apparatus.

1.
G.
Gonella
,
E. H. G.
Backus
,
Y.
Nagata
,
D. J.
Bonthuis
,
P.
Loche
,
A.
Schlaich
,
R. R.
Netz
,
A.
Kühnle
,
I. T.
McCrum
,
M. T. M.
Koper
,
M.
Wolf
,
B.
Winter
,
G.
Meijer
,
R. K.
Campen
, and
M.
Bonn
, “
Water at charged interfaces
,”
Nat. Rev. Chem.
5
,
466
485
(
2021
).
2.
M. F.
Ruiz-Lopez
,
J. S.
Francisco
,
M. T. C.
Martins-Costa
, and
J. M.
Anglada
, “
Molecular reactions at aqueous interfaces
,”
Nat. Rev. Chem.
4
,
459
475
(
2020
).
3.
M.
Becker
,
P.
Loche
,
M.
Rezaei
,
A.
Wolde-Kidan
,
Y.
Uematsu
,
R. R.
Netz
, and
D. J.
Bonthuis
, “
Multiscale modeling of aqueous electric double layers
,”
Chem. Rev.
124
,
1
26
(
2024
).
4.
H.
Helmholtz
, “
Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche
,”
Ann. Phys.
165
(
6
),
211
233
(
1853
).
5.
M.
Gouy
, “
Sur la constitution de la charge électrique à la surface d’un électrolyte
,”
J. Phys. Theor. Appl.
9
,
457
468
(
1910
).
6.
D. L.
Chapman
, “
LI. A contribution to the theory of electrocapillarity
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
25
,
475
481
(
1913
).
7.
O.
Stern
, “
Zur Theorie der Elektrolytischen Doppelschicht
,”
Z. Elektrochem. Angew. Phys. Chem.
30
,
508
516
(
1924
).
8.
T. T.
Duignan
,
M.
Peng
,
A. V.
Nguyen
,
X. S.
Zhao
,
M. D.
Baer
, and
C. J.
Mundy
, “
Detecting the undetectable: The role of trace surfactant in the Jones–Ray effect
,”
J. Chem. Phys.
149
,
194702
(
2018
).
9.
H. I.
Okur
,
Y.
Chen
,
D. M.
Wilkins
, and
S.
Roke
, “
The Jones–Ray effect reinterpreted: Surface tension minima of low ionic strength electrolyte solutions are caused by electric field induced water–water correlations
,”
Chem. Phys. Lett.
684
,
433
442
(
2017
).
10.
Y.
Uematsu
,
D. J.
Bonthuis
, and
R. R.
Netz
, “
Charged surface-active impurities at nanomolar concentration induce Jones–Ray effect
,”
J. Phys. Chem. Lett.
9
,
189
193
(
2018
).
11.
H. I.
Okur
,
C. I.
Drexler
,
E.
Tyrode
,
P. S.
Cremer
, and
S.
Roke
, “
The Jones–Ray effect is not caused by surface-active impurities
,”
J. Phys. Chem. Lett.
9
,
6739
6743
(
2018
).
12.
H.
Xiong
,
J. K.
Lee
,
R. N.
Zare
, and
W.
Min
, “
Strong electric field observed at the interface of aqueous microdroplets
,”
J. Phys. Chem. Lett.
11
,
7423
7428
(
2020
).
13.
H.
Hao
,
I.
Leven
, and
T.
Head-Gordon
, “
Can electric fields drive chemistry for an aqueous microdroplet?
,”
Nat. Commun.
13
,
280
(
2022
).
14.
A. V.
Delgado
,
F.
González-Caballero
,
R. J.
Hunter
,
L. K.
Koopal
, and
J.
Lyklema
, “
Measurement and interpretation of electrokinetic phenomena
,”
J. Colloid Interface Sci.
309
,
194
224
(
2007
).
15.
M. A.
Brown
,
Z.
Abbas
,
A.
Kleibert
,
R. G.
Green
,
A.
Goel
,
S.
May
, and
T. M.
Squires
, “
Determination of surface potential and electrical double-layer structure at the aqueous electrolyte-nanoparticle interface
,”
Phys. Rev. X
6
,
011007
(
2016
).
16.
M. R.
Becker
,
P.
Loche
, and
R. R.
Netz
, “
Electrokinetic, electrochemical, and electrostatic surface potentials of the pristine water liquid–vapor interface
,”
J. Chem. Phys.
157
,
240902
(
2022
).
17.
D.
Bhattacharyya
,
P. E.
Videla
,
M.
Cattaneo
,
V. S.
Batista
,
T.
Lian
, and
C. P.
Kubiak
, “
Vibrational Stark shift spectroscopy of catalysts under the influence of electric fields at electrode–solution interfaces
,”
Chem. Sci.
12
,
10131
10149
(
2021
).
18.
J. G.
Patrow
,
S. A.
Sorenson
, and
J. M.
Dawlaty
, “
Direct spectroscopic measurement of interfacial electric fields near an electrode under polarizing or current-carrying conditions
,”
J. Phys. Chem. C
121
,
11585
11592
(
2017
).
19.
S.
Sarkar
,
A.
Maitra
,
S.
Banerjee
,
V. S.
Thoi
, and
J. M.
Dawlaty
, “
Electric fields at metal–surfactant interfaces: A combined vibrational spectroscopy and capacitance study
,”
J. Phys. Chem. B
124
,
1311
1321
(
2020
).
20.
S.
Dadashi
,
S.
Parshotam
,
B.
Mandal
,
B.
Rehl
,
J. M.
Gibbs
, and
E.
Borguet
, “
Influence of charged site density on local electric fields and polar solvent organization at oxide interfaces
,”
J. Phys. Chem. C
128
,
9683
9692
(
2024
).
21.
S.
Ong
,
X.
Zhao
, and
K. B.
Eisenthal
, “
Polarization of water molecules at a charged interface: Second harmonic studies of the silica/water interface
,”
Chem. Phys. Lett.
191
,
327
335
(
1992
).
22.
F. M.
Geiger
, “
Second harmonic generation, sum frequency generation, and χ(3): Dissecting environmental interfaces with a nonlinear optical Swiss Army knife
,”
Annu. Rev. Phys. Chem.
60
,
61
83
(
2009
).
23.
P. L.
Hayes
,
J. N.
Malin
,
D. S.
Jordan
, and
F. M.
Geiger
, “
Get charged up: Nonlinear optical voltammetry for quantifying the thermodynamics and electrostatics of metal cations at aqueous/oxide interfaces
,”
Chem. Phys. Lett.
499
,
183
192
(
2010
).
24.
C.
Lütgebaucks
,
G.
Gonella
, and
S.
Roke
, “
Optical label-free and model-free probe of the surface potential of nanoscale and microscopic objects in aqueous solution
,”
Phys. Rev. B
94
,
195410
(
2016
).
25.
P. E.
Ohno
,
S. A.
Saslow
,
H.-f.
Wang
,
F. M.
Geiger
, and
K. B.
Eisenthal
, “
Phase-referenced nonlinear spectroscopy of the α-quartz/water interface
,”
Nat. Commun.
7
,
13587
(
2016
).
26.
P. E.
Ohno
,
H.
Chang
,
A. P.
Spencer
,
Y.
Liu
,
M. D.
Boamah
,
H.-f.
Wang
, and
F. M.
Geiger
, “
Beyond the Gouy–Chapman model with heterodyne-detected second harmonic generation
,”
J. Phys. Chem. Lett.
10
,
2328
2334
(
2019
).
27.
H.
Chang
,
P. E.
Ohno
,
Y.
Liu
,
E.
Lozier
,
N.
Dalchand
, and
F. M.
Geiger
, “
Direct measurement of charge reversal on lipid bilayers using heterodyne-detected second harmonic generation spectroscopy
,”
J. Phys. Chem.
124
,
641
(
2019
).
28.
L.
Dalstein
,
K.-Y.
Chiang
, and
Y.-C.
Wen
, “
Direct quantification of water surface charge by phase-sensitive second harmonic spectroscopy
,”
J. Phys. Chem. Lett.
10
,
5200
5205
(
2019
).
29.
L.
Dalstein
,
J.-R.
Huang
, and
Y.-C.
Wen
, “
Wavelength-scanning second-harmonic generation for determining absolute charge density at aqueous interfaces
,”
Opt. Lett.
45
,
3733
3736
(
2020
).
30.
E.
Ma
and
F. M.
Geiger
, “
Divalent ion specific outcomes on stern layer structure and total surface potential at the silica:water interface
,”
J. Phys. Chem. A
125
,
10079
10088
(
2021
).
31.
P.
Xu
,
A.
Huang
, and
J.
Suntivich
, “
Phase-sensitive second-harmonic generation of electrochemical interfaces
,”
J. Phys. Chem. Lett.
11
,
8216
8221
(
2020
).
32.
B.
Rehl
,
E.
Ma
,
S.
Parshotam
,
E. L.
DeWalt-Kerian
,
T.
Liu
,
F. M.
Geiger
, and
J. M.
Gibbs
, “
Water structure in the electrical double layer and the contributions to the total interfacial potential at different surface charge densities
,”
J. Am. Chem. Soc.
144
,
16338
16349
(
2022
).
33.
P.
Xu
,
R.
Wang
,
H.
Zhang
,
V.
Carnevale
,
E.
Borguet
, and
J.
Suntivich
, “
Cation modifies interfacial water structures on platinum during alkaline hydrogen electrocatalysis
,”
J. Am. Chem. Soc.
146
,
2426
2434
(
2024
).
34.
C.
Yu
,
P.
Shang
,
Y.
Guo
, and
Z.
Zhang
, “
In situ heterodyne-detected second-harmonic generation study of the influence of cholesterol on dye molecule adsorption on lipid membrane
,”
J. Phys. Chem. B
128
,
1892
1899
(
2024
).
35.
R. W.
Boyd
,
Nonlinear Optics
(
Academic Press
,
Burlington, MA
,
2008
).
36.
Y.-C.
Wen
,
S.
Zha
,
X.
Liu
,
S.
Yang
,
P.
Guo
,
G.
Shi
,
H.
Fang
,
Y. R.
Shen
, and
C.
Tian
, “
Unveiling microscopic structures of charged water interfaces by surface-specific vibrational spectroscopy
,”
Phys. Rev. Lett.
116
,
016101
(
2016
).
37.
G.
Gonella
,
C.
Lütgebaucks
,
A. G. F.
de Beer
, and
S.
Roke
, “
Second harmonic and sum-frequency generation from aqueous interfaces is modulated by interference
,”
J. Phys. Chem. C
120
,
9165
9173
(
2016
).
38.
K.
Kemnitz
,
K.
Bhattacharyya
,
J. M.
Hicks
,
G. R.
Pinto
,
B.
Eisenthal
, and
T. F.
Heinz
, “
The phase of second-harmonic light generated at an interface and its relation to absolute molecular orientation
,”
Chem. Phys. Lett.
131
,
285
290
(
1986
).
39.
Y.
Hsiao
,
T.-H.
Chou
,
A.
Patra
, and
Y.-C.
Wen
, “
Momentum-dependent sum-frequency vibrational spectroscopy of bonded interface layer at charged water interfaces
,”
Sci. Adv.
9
,
eadg2823
(
2023
).
40.
M. M.
Uddin
,
M. S.
Azam
, and
D. K.
Hore
, “
Variable-angle surface spectroscopy reveals the water structure in the stern layer at charged aqueous interfaces
,”
J. Am. Chem. Soc.
146
,
11756
11763
(
2024
).
41.
B.
Rehl
and
J. M.
Gibbs
, “
Role of ions on the surface-bound water structure at the silica/water interface: Identifying the spectral signature of stability
,”
J. Phys. Chem. Lett.
12
,
2854
2864
(
2021
).
42.
V.
Balos
,
T.
Garling
,
A. D.
Duque
,
B.
John
,
M.
Wolf
, and
M.
Thämer
, “
Phase-sensitive vibrational sum and difference frequency-generation spectroscopy enabling nanometer-depth profiling at interfaces
,”
J. Phys. Chem. C
126
,
10818
10832
(
2022
).
43.
C.
Cai
,
M. S.
Azam
, and
D. K.
Hore
, “
Determining the surface potential of charged aqueous interfaces using nonlinear optical methods
,”
J. Phys. Chem. C
125
,
25307
25315
(
2021
).
44.
J. F. D.
Liljeblad
and
E.
Tyrode
, “
Vibrational sum frequency spectroscopy studies at solid/liquid interfaces: Influence of the experimental geometry in the spectral shape and enhancement
,”
J. Phys. Chem. C
116
,
22893
22903
(
2012
).
45.
R. M.
Plocinik
and
G. J.
Simpson
, “
Polarization characterization in surface second harmonic generation by nonlinear optical null ellipsometry
,”
Anal. Chim. Acta
496
,
133
142
(
2003
).
46.
L. B.
Dreier
,
C.
Bernhard
,
G.
Gonella
,
E. H. G.
Backus
, and
M.
Bonn
, “
Surface potential of a planar charged lipid–water interface. What do vibrating plate methods, second harmonic and sum frequency measure?
,”
J. Phys. Chem. Lett.
9
,
5685
5691
(
2018
).
47.
S.
Parshotam
,
W.
Zhang
,
B.
Rehl
,
A.
Darlington
,
M. D. H.
Sikder
,
A.
Brown
, and
J. M.
Gibbs
, “
Revealing silica’s pH-dependent second harmonic generation response with overcharging
,”
J. Phys. Chem. C
127
,
8389
8398
(
2023
).
48.
H.
Wang
,
X.-H.
Hu
, and
H.-F.
Wang
, “
Charge-induced χ(3) susceptibility in interfacial nonlinear optical spectroscopy beyond the bulk aqueous contributions: The case for silica/water interface
,”
J. Phys. Chem. C
125
,
26208
26215
(
2021
).
49.
D. K.
Hore
and
E.
Tyrode
, “
Probing charged aqueous interfaces near critical angles: Effect of varying coherence length
,”
J. Phys. Chem. C
123
,
16911
16920
(
2019
).
50.
T.
Joutsuka
and
A.
Morita
, “
Electrolyte and temperature effects on third-order susceptibility in sum-frequency generation spectroscopy of aqueous salt solutions
,”
J. Phys. Chem. C
122
,
11407
11413
(
2018
).
51.
E.
Ma
,
P. E.
Ohno
,
J.
Kim
,
Y.
Liu
,
E. H.
Lozier
,
T. F.
Miller
III
,
H.-F.
Wang
, and
F. M.
Geiger
, “
A new imaginary term in the second-order nonlinear susceptibility from charged interfaces
,”
J. Phys. Chem. Lett.
12
,
5649
5659
(
2021
).
52.
T.
Joutsuka
,
T.
Hirano
,
M.
Sprik
, and
A.
Morita
, “
Effects of third-order susceptibility in sum frequency generation spectra: A molecular dynamics study in liquid water
,”
Phys. Chem. Chem. Phys.
20
,
3040
3053
(
2018
).
53.
S.
Kielich
, “
Optical second-harmonic generation by electrically polarized isotropic media
,”
IEEE J. Quantum Electron.
5
,
562
568
(
1969
).
54.
J.
Schaefer
,
G.
Gonella
,
M.
Bonn
, and
E. H. G.
Backus
, “
Surface-specific vibrational spectroscopy of the water/silica interface: Screening and interference
,”
Phys. Chem. Chem. Phys.
19
,
16875
16880
(
2017
).
You do not currently have access to this content.