The interaction between metal oxides and volatile organic compounds (VOCs) from the ambient atmosphere plays an important role in environmental and catalytic applications. Previous scanning probe microscopy and x-ray spectroscopy studies revealed surprisingly that the TiO2 [rutile (110)] surface selectively adsorbed atmospheric carboxylic acids, which typically exist in only parts-per-billion concentrations. In this work, we used in situ sum-frequency vibrational spectroscopy to study the interaction between rutile (110) and typical VOC molecules, including formic acid, acetic acid, and formaldehyde. Spectra from all three adsorbed molecules on rutile (110) were similar to the rutile surface spectrum in the ambient atmosphere, showing a broad resonance near 2950 cm−1 that can be attributed to the bridging bidentate adsorption of corresponding compounds. In contrast, on a fused silica surface, a molecular monodentate adsorption configuration was observed for all the molecules, with aliphatic carbons appearing to be the dominant adventitious species.

1.
M. B.
Gawande
,
R. K.
Pandey
, and
R. V.
Jayaram
,
Catal. Sci. Technol.
2
(
6
),
1113
1125
(
2012
).
2.
A.
Fujishima
and
K.
Honda
,
Nature
238
,
37
38
(
1972
).
3.
K.
Hashimoto
,
H.
Irie
, and
A.
Fujishima
,
Jpn. J. Appl. Phys
44
(
12R
),
8269
8285
(
2005
).
4.
A.
Fujishima
,
X.
Zhang
, and
D. A.
Tryk
,
Surf. Sci. Rep.
63
(
12
),
515
582
(
2008
).
5.
J.
Gong
and
X.
Bao
,
Chem. Soc. Rev.
46
(
7
),
1770
1771
(
2017
).
6.
Y.
Cao
,
S.
Chen
,
Y.
Li
,
Y.
Gao
,
D.
Yang
,
Y. R.
Shen
, and
W.
Liu
,
Sci. Adv.
2
(
9
),
e1601162
(
2016
).
7.
J.
Balajka
,
M. A.
Hines
,
W. J. I.
DeBenedetti
,
M.
Komora
,
J.
Pavelec
,
M.
Schmid
, and
U.
Diebold
,
Science
361
(
6404
),
786
789
(
2018
).
8.
R.
Wang
,
K.
Hashimoto
,
A.
Fujishima
,
M.
Chikuni
,
E.
Kojima
,
A.
Kitamura
,
M.
Shimohigoshi
, and
T.
Watanabe
,
Nature
388
(
6641
),
431
432
(
1997
).
9.
N.
Sakai
,
R.
Wang
,
A.
Fujishima
,
T.
Watanabe
, and
K.
Hashimoto
,
Langmuir
14
(
20
),
5918
5920
(
1998
).
10.
J. P. W.
Treacy
,
H.
Hussain
,
X.
Torrelles
,
G.
Cabailh
,
O.
Bikondoa
,
C.
Nicklin
,
G.
Thornton
, and
R.
Lindsay
,
J. Phys. Chem. C
123
(
13
),
8463
8468
(
2019
).
12.
Y. R.
Shen
,
J. Opt. Soc. Am. B
28
(
12
),
A56
A66
(
2011
).
13.
H.-F.
Wang
,
Prog. Surf. Sci.
91
(
4
),
155
182
(
2016
).
14.
P.
Khare
,
N.
Kumar
,
K. M.
Kumari
, and
S. S.
Srivastava
,
Rev. Geophys.
37
(
2
),
227
248
, (
1999
).
15.
T.
Salthammer
,
Angew. Chem., Int. Ed.
52
(
12
),
3320
3327
(
2013
).
16.
Y.
Wang
and
C.
Wöll
,
Chem. Soc. Rev.
46
(
7
),
1875
1932
(
2017
).
17.
C.
Sambiagio
,
D.
Schönbauer
,
R.
Blieck
,
T.
Dao-Huy
,
G.
Pototschnig
,
P.
Schaaf
,
T.
Wiesinger
,
M. F.
Zia
,
J.
Wencel-Delord
,
T.
Besset
,
B. U. W.
Maes
, and
M.
Schnürch
,
Chem. Soc. Rev.
47
(
17
),
6603
6743
(
2018
).
18.
Q.
Guo
,
Z.
Ma
,
C.
Zhou
,
Z.
Ren
, and
X.
Yang
,
Chem. Rev.
119
(
20
),
11020
11041
(
2019
).
19.
D.
Yang
,
Y.
Li
,
X.
Liu
,
Y.
Cao
,
Y.
Gao
,
Y. R.
Shen
, and
W.
Liu
,
Proc. Natl. Acad. Sci. U. S. A.
115
(
17
),
E3888
E3894
(
2018
).
20.
X.
Liu
,
T.
Zhou
, and
W.-T.
Liu
,
J. Chem. Phys.
150
(
8
),
084701
(
2019
).
21.
X.
Liu
,
D.
Yang
,
Y.
Li
,
Y.
Gao
, and
W.
Liu
,
J. Phys. Chem. C
123
(
49
),
29759
29764
(
2019
).
22.
O. N.
Oliveira
, Jr.
,
L.
Caseli
, and
K.
Ariga
,
Chem. Rev.
122
(
6
),
6459
6513
(
2022
).
23.
W. T.
Liu
,
L. N.
Zhang
, and
Y. R.
Shen
,
Chem. Phys. Lett.
412
(
1–3
),
206
209
(
2005
).
24.
L.
Zhang
,
W.
Liu
,
Y. R.
Shen
, and
D. G.
Cahill
,
J. Phys. Chem. C
111
(
5
),
2069
2076
(
2007
).
25.
W.
Liu
,
D.
Peng
, and
Y. R.
Shen
,
J. Chem. Phys.
125
(
14
),
144711
(
2006
).
26.
S.
Liu
,
A.
Liu
,
B.
Wen
,
R.
Zhang
,
C.
Zhou
,
L.
Liu
, and
Z.
Ren
,
J. Phys. Chem. Lett.
6
(
16
),
3327
3334
(
2015
).
27.
R.
Feng
,
A.
Liu
,
S.
Liu
,
J.
Shi
,
R.
Zhang
, and
Z.
Ren
,
J. Phys. Chem. C
119
(
18
),
9798
9804
(
2015
).
28.
C. E.
Nanayakkara
,
J. K.
Dillon
, and
V. H.
Grassian
,
J. Phys. Chem. C
118
(
44
),
25487
25495
(
2014
).
29.
S.
Schrödle
,
F. G.
Moore
, and
G. L.
Richmond
,
J. Phys. Chem. C
111
(
22
),
8050
8059
(
2007
).
30.
A.
Vittadini
,
A.
Selloni
,
F. P.
Rotzinger
, and
M.
Grätzel
,
J. Phys. Chem. B
104
(
6
),
1300
1306
(
2000
).
31.
A.
Gutiérrez-Sosa
,
P.
Martínez-Escolano
,
H.
Raza
,
R.
Lindsay
,
P. L.
Wincott
, and
G.
Thornton
,
Surf. Sci.
471
(
1–3
),
163
169
(
2001
).
32.
C.
Wang
,
H.
Groenzin
, and
M. J.
Shultz
,
J. Am. Chem. Soc.
127
(
27
),
9736
9744
(
2005
).
33.
C. M.
Dover
,
D. C.
Grinter
,
C. M.
Yim
,
C. A.
Muryn
,
H.
Bluhm
,
M.
Salmeron
, and
G.
Thornton
,
Surf. Sci.
699
,
121628
(
2020
).
34.
L.
Liu
and
J.
Zhao
,
Surf. Sci.
652
(
SI
),
156
162
(
2016
).
35.
G.
Busca
,
J.
Lamotte
,
J. C.
Lavalley
, and
V.
Lorenzelli
,
J. Am. Chem. Soc.
109
(
17
),
5197
5202
(
1987
).
36.
H.
Li
,
C.
Rameshan
,
A. V.
Bukhtiyarov
,
I. P.
Prosvirin
,
V. I.
Bukhtiyarov
, and
G.
Rupprechter
,
Surf. Sci.
679
,
139
146
(
2019
).
37.
K. L.
Miller
,
C. W.
Lee
,
J. L.
Falconer
, and
J. W.
Medlin
,
J. Catal.
275
(
2
),
294
299
(
2010
).
38.
L. J.
Bellamy
,
R. F.
Lake
, and
R. J.
Pace
,
Spectrochim. Acta
19
(
2
),
443
449
(
1963
).
39.
U.
Diebold
,
J. Chem. Phys.
147
(
4
),
040901
(
2017
).
40.
F.
Brandalise Nunes
,
N.
Comini
,
J. T.
Diulus
,
T.
Huthwelker
,
M.
Iannuzzi
,
J.
Osterwalder
, and
Z.
Novotny
,
J. Phys. Chem. Lett.
14
(
13
),
3132
3138
(
2023
).
41.
C.
Sun
,
L.
Liu
,
A.
Selloni
,
G. Q. M.
Lu
, and
S. C.
Smith
,
J. Mater. Chem.
20
(
46
),
10319
10334
(
2010
).
42.
Y.
Morikawa
,
I.
Takahashi
,
M.
Aizawa
,
Y.
Namai
,
T.
Sasaki
, and
Y.
Iwasawa
,
J. Phys. Chem. B
108
(
38
),
14446
14451
(
2004
).
43.
A.
Mattsson
,
S.
Hu
,
K.
Hermansson
, and
L.
Österlund
,
J. Chem. Phys.
140
(
3
),
034705
(
2014
).
44.
L. V.
Gurvich
,
I. V.
Veits
, and
C. B.
Alcock
,
Thermodynamics Properties of Individual Substances
(
Hemisphere Publishing Corporation
,
1989
).
You do not currently have access to this content.