In a recent paper, Di Lisio et al. [J. Chem. Phys. 159, 064505 (2023)] analyzed a series of temperature down-jumps using the single-parameter aging (SPA) ansatz combined with a specific assumption about density scaling in the out-of-equilibrium system and did not find a good prediction for the largest down-jumps. In this paper, we show that SPA in its original form does work for all their data, including large jumps of ΔT > 20 K. Furthermore, we discuss different approaches to the extension of the density scaling concept to out-of-equilibrium systems.

1.
A. Q.
Tool
and
C. G.
Eicitlin
, “
Variations caused in the heating curves of glass by heat treatment
,”
J. Am. Ceram. Soc.
14
,
276
308
(
1931
).
2.
Z.
Song
,
C.
Rodríguez-Tinoco
,
A.
Mathew
, and
S.
Napolitano
, “
Fast equilibration mechanisms in disordered materials mediated by slow liquid dynamics
,”
Sci. Adv.
8
,
eabm7154
(
2022
).
3.
B.
Riechers
,
L. A.
Roed
,
S.
Mehri
,
T. S.
Ingebrigtsen
,
T.
Hecksher
,
J. C.
Dyre
, and
K.
Niss
, “
Predicting nonlinear physical aging of glasses from equilibrium relaxation via the material time
,”
Sci. Adv.
8
,
eabl9809
(
2022
).
4.
L. F.
Elizondo-Aguilera
,
T.
Rizzo
, and
T.
Voigtmann
, “
From subaging to hyperaging in structural glasses
,”
Phys. Rev. Lett.
129
,
238003
(
2022
).
5.
I. M.
Douglass
and
J. C.
Dyre
, “
Distance-as-time in physical aging
,”
Phys. Rev. E
106
,
054615
(
2022
).
6.
S.
Mehri
,
L.
Costigliola
, and
J. C.
Dyre
, “
Single-parameter aging in the weakly nonlinear limit
,”
Thermo
2
,
160
170
(
2022
).
7.
A.
Vila-Costa
,
M.
Gonzalez-Silveira
,
C.
Rodríguez-Tinoco
,
M.
Rodríguez-López
, and
J.
Rodriguez-Viejo
, “
Emergence of equilibrated liquid regions within the glass
,”
Nat. Phys.
19
,
114
(
2023
).
8.
M.
Ruiz-Ruiz
,
A.
Vila-Costa
,
T.
Bar
,
C.
Rodríguez-Tinoco
,
M.
Gonzalez-Silveira
,
J. A.
Plaza
,
J.
Alcalá
,
J.
Fraxedas
, and
J.
Rodriguez-Viejo
, “
Real-time microscopy of the relaxation of a glass
,”
Nat. Phys.
19
,
1509
(
2023
).
9.
V.
Di Lisio
,
V.-M.
Stavropoulou
, and
D.
Cangialosi
, “
Physical aging in molecular glasses beyond the α relaxation
,”
J. Chem. Phys.
159
,
064505
(
2023
).
10.
J.
Málek
, “
Structural relaxation rate and aging in amorphous solids
,”
J. Phys. Chem. C
127
,
6080
(
2023
).
11.
M.
Hénot
and
F.
Ladieu
, “
Non-linear physical aging of supercooled glycerol induced by large upward ideal temperature steps monitored through cooling experiments
,”
J. Chem. Phys.
158
,
224504
(
2023
).
12.
K.
Moch
,
R.
Böhmer
, and
C.
Gainaru
, “
Temperature oscillations provide access to high-order physical aging harmonics of a glass forming melt
,”
J. Chem. Phys.
159
,
221102
(
2023
).
13.
C.
Herrero
,
C.
Scalliet
,
M.
Ediger
, and
L.
Berthier
, “
Two-step devitrification of ultrastable glasses
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2220824120
(
2023
).
14.
J. P.
Gabriel
and
R.
Richert
, “
Comparing two sources of physical aging: Temperature vs electric field
,”
J. Chem. Phys.
159
,
164502
(
2023
).
15.
R.
Richert
and
J. P.
Gabriel
, “
Fast vs slow physical aging of a glass forming liquid
,”
J. Chem. Phys.
159
,
084504
(
2023
).
16.
M.
Hénot
,
X. A.
Nguyen
, and
F.
Ladieu
, “
Crossing the Frontier of validity of the material time approach in the aging of a molecular glass
,”
J. Phys. Chem. Lett.
15
,
3170
3177
(
2024
).
17.
R. F.
Lancelotti
,
E. D.
Zanotto
, and
S.
Sen
, “
Kinetics of physical aging of a silicate glass following temperature up- and down-jumps
,”
J. Chem. Phys.
160
,
034504
(
2024
).
18.
K.
Moch
,
C.
Gainaru
, and
R.
Böhmer
, “
Nonlinear susceptibilities and higher-order responses related to physical aging: Wiener–Volterra approach and extended Tool–Narayanaswamy–Moynihan models
,”
J. Chem. Phys.
161
,
014502
(
2024
).
19.
T.
Böhmer
,
J. P.
Gabriel
,
L.
Costigliola
,
J.-N.
Kociok
,
T.
Hecksher
,
J. C.
Dyre
, and
T.
Blochowicz
, “
Time reversibility during the ageing of materials
,”
Nat. Phys.
20
,
637
645
(
2024
).
20.
B.
Riechers
,
A.
Das
,
E.
Dufresne
,
P. M.
Derlet
, and
R.
Maaß
, “
Intermittent cluster dynamics and temporal fractional diffusion in a bulk metallic glass
,”
Nat. Commun.
15
,
6595
(
2024
).
21.
P. B.
Macedo
and
A.
Napolitano
, “
Effects of a distribution of volume relaxation times in the annealing of BSC glass
,”
J. Res. Natl. Bur. Stand., Sect. A
71A
,
231
238
(
1967
).
22.
Y.
Huang
and
D.
Paul
, “
Physical aging of thin glassy polymer films monitored by optical properties
,”
Macromolecules
39
,
1554
1559
(
2006
).
23.
M. M.
Santore
,
R. S.
Duran
, and
G. B.
McKenna
, “
Volume recovery in epoxy glasses subjected to torsional deformations: The question of rejuvenation
,”
Polymer
32
,
2377
2381
(
1991
).
24.
L. C. E.
Struik
, “
Volume-recovery theory: 1. Kovacs’ τ-effective paradox
,”
Polymer
38
,
4677
4685
(
1997
).
25.
D.
Cangialosi
,
V. M.
Boucher
,
A.
Alegría
, and
J.
Colmenero
, “
Volume recovery of polystyrene/silica nanocomposites
,”
J. Polym. Sci., Part B: Polym. Phys.
51
,
847
853
(
2013
).
26.
C. T.
Moynihan
,
P. B.
Macedo
,
C. J.
Montrose
,
C. J.
Montrose
,
P. K.
Gupta
,
M. A.
DeBolt
,
J. F.
Dill
,
B. E.
Dom
,
P. W.
Drake
,
A. J.
Easteal
et al, “
Structural relaxation in vitreous materials
,”
Ann. N. Y. Acad. Sci.
279
,
15
(
1976
).
27.
A. J.
Kovacs
,
J. J.
Aklonis
,
J. M.
Hutchinson
, and
A. R.
Ramos
, “
Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory
,”
J. Polym. Sci., Polym. Phys. Ed.
17
,
1097
1162
(
1979
).
28.
A. J.
Kovacs
,
R. A.
Stratton
, and
J. D.
Ferry
, “
Dynamic mechanical properties of polyvinyl acetate in shear in the glass transition temperature range
,”
J. Phys. Chem.
67
,
152
161
(
1963
).
29.
I.
Echeverria
,
P.-C.
Su
,
S. L.
Simon
, and
D. J.
Plazek
, “
Physical aging of a polyetherimide: Creep and DSC measurements
,”
J. Polym. Sci., Part B: Polym. Phys.
33
,
2457
2468
(
1995
).
30.
V. A.
Soloukhin
,
J. C. M.
Brokken-Zijp
,
O. L. J.
van Asselen
, and
G.
de With
, “
Physical aging of polycarbonate: Elastic modulus, hardness, creep, endothermic peak, molecular weight distribution, and infrared data
,”
Macromolecules
36
,
7585
7597
(
2003
).
31.
Y.
Huang
and
D. R.
Paul
, “
Physical aging of thin glassy polymer films monitored by gas permeability
,”
Polymer
45
,
8377
8393
(
2004
).
32.
R. L.
Leheny
and
S. R.
Nagel
, “
Frequency-domain study of physical aging in a simple liquid
,”
Phys. Rev. B
57
,
5154
(
1998
).
33.
P.
Lunkenheimer
,
R.
Wehn
,
U.
Schneider
, and
A.
Loidl
, “
Glassy aging dynamics
,”
Phys. Rev. Lett.
95
,
055702
(
2005
).
34.
R.
Richert
,
P.
Lunkenheimer
,
S.
Kastner
, and
A.
Loidl
, “
On the derivation of equilibrium relaxation times from aging experiments
,”
J. Phys. Chem. B
117
,
12689
12694
(
2013
).
35.
O.
Dambon
,
F.
Wang
,
F.
Klocke
,
G.
Pongs
,
B.
Bresseler
,
Y.
Chen
, and
A. Y.
Yi
, “
Efficient mold manufacturing for precision glass molding
,”
J. Vac. Sci. Technol. B
27
,
1445
1449
(
2009
).
36.
W.
Ming
,
Z.
Chen
,
J.
Du
,
Z.
Zhang
,
G.
Zhang
,
W.
He
,
J.
Ma
, and
F.
Shen
, “
A comprehensive review of theory and technology of glass molding process
,”
Int. J. Adv. Des. Manuf. Technol.
107
,
2671
2706
(
2020
).
37.
C.
Jiang
,
C. M.
Tovar
,
J.-H.
Staasmeyer
,
M.
Friedrichs
,
T.
Grunwald
, and
T.
Bergs
, “
Simulation of the refractive index variation and validation of the form deviation in precisely molded chalcogenide glass lenses (IRG 26) considering the stress and structure relaxation
,”
Materials
15
,
6756
(
2022
).
38.
A. T.
Vu
,
R. d. l. A.
Avila Hernandez
,
T.
Grunwald
, and
T.
Bergs
, “
Modeling nonequilibrium thermoviscoelastic material behaviors of glass in nonisothermal glass molding
,”
J. Am. Ceram. Soc.
105
,
6799
6815
(
2022
).
39.
A.
Jha
,
B. D. O.
Richards
,
G.
Jose
,
T.
Toney Fernandez
,
C. J.
Hill
,
J.
Lousteau
, and
P.
Joshi
, “
Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications
,”
Int. Mater. Rev.
57
,
357
382
(
2012
).
40.
A.
Ellison
and
I. A.
Cornejo
, “
Glass substrates for liquid crystal displays
,”
Int. J. Appl. Glass Sci.
1
,
87
103
(
2010
).
41.
A. T.
Weyhe
,
E.
Andersen
,
R.
Mikkelsen
, and
D.
Yu
, “
Accelerated physical aging of four PET copolyesters: Enthalpy relaxation and yield behaviour
,”
Polymer
278
,
125987
(
2023
).
42.
M. M.
Merrick
,
R.
Sujanani
, and
B. D.
Freeman
, “
Glassy polymers: Historical findings, membrane applications, and unresolved questions regarding physical aging
,”
Polymer
211
,
123176
(
2020
).
43.
A. R.
Boccaccini
,
M.
Erol
,
W. J.
Stark
,
D.
Mohn
,
Z.
Hong
, and
J. F.
Mano
, “
Polymer/bioactive glass nanocomposites for biomedical applications: A review
,”
Compos. Sci. Technol.
70
,
1764
1776
(
2010
), part of the Special Issue: iCCM-17: Composites in Biomedical Applications.
44.
A. Q.
Tool
, “
Relation between inelastic deformability and thermal expansion of glass in its annealing range
,”
J. Am. Ceram. Soc.
29
,
240
(
1946
).
45.
O. S.
Narayanaswamy
, “
A model of structural relaxation in glass
,”
J. Am. Ceram. Soc.
54
,
491
(
1971
).
46.
L. C. E.
Struik
, “
Physical aging in plastics and other glassy materials
,”
Polym. Eng. Sci.
17
,
165
173
(
1977
).
47.
J. M.
Hutchinson
, “
Physical aging of polymers
,”
Prog. Polym. Sci.
20
,
703
760
(
1995
).
48.
G. B.
McKenna
, “
Looking at the glass transition: Challenges of extreme time scales and other interesting problems
,”
Rubber Chem. Technol.
93
,
79
120
(
2020
).
49.
V. M.
Boucher
,
D.
Cangialosi
,
A.
Alegría
, and
J.
Colmenero
, “
Enthalpy recovery of glassy polymers: Dramatic deviations from the extrapolated liquidlike behavior
,”
Macromolecules
44
,
8333
8342
(
2011
).
50.
N. G.
Perez-De Eulate
and
D.
Cangialosi
, “
The very long-term physical aging of glassy polymers
,”
Phys. Chem. Chem. Phys.
20
,
12356
12361
(
2018
).
51.
D.
Cangialosi
,
V. M.
Boucher
,
A.
Alegría
, and
J.
Colmenero
, “
Direct evidence of two equilibration mechanisms in glassy polymers
,”
Phys. Rev. Lett.
111
,
095701
(
2013
).
52.
S.
Mehri
,
T. S.
Ingebrigtsen
, and
J. C.
Dyre
, “
Single-parameter aging in a binary Lennard-Jones system
,”
J. Chem. Phys.
154
,
094504
(
2021
).
53.
C.
Alba-Simionesco
,
D.
Kivelson
, and
G.
Tarjus
, “
Temperature, density, and pressure dependence of relaxation times in supercooled liquids
,”
J. Chem. Phys.
116
,
5033
(
2002
).
54.
G.
Tarjus
,
D.
Kivelson
,
S.
Mossa
, and
C.
Alba-Simionesco
, “
Disentangling density and temperature effects in the viscous slowing down of glassforming liquids
,”
J. Chem. Phys.
120
,
6135
6141
(
2004
).
55.
R.
Casalini
and
C. M.
Roland
, “
Thermodynamical scaling of the glass transition dynamics
,”
Phys. Rev. E
69
,
062501
(
2004
).
56.
C. M.
Roland
,
S.
Hensel-Bielowka
,
M.
Paluch
, and
R.
Casalini
, “
Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure
,”
Rep. Prog. Phys.
68
,
1405
1478
(
2005
).
57.
K.
Niss
, “
Mapping isobaric aging onto the equilibrium phase diagram
,”
Phys. Rev. Lett.
119
,
115703
(
2017
).
58.
K.
Niss
, “
A density scaling conjecture for aging glasses
,”
J. Chem. Phys.
157
,
054503
(
2022
).
59.
T.
Hecksher
,
N. B.
Olsen
, and
J. C.
Dyre
, “
Communication: Direct tests of single-parameter aging
,”
J. Chem. Phys.
142
,
241103
(
2015
).
60.
K.
Niss
,
J. C.
Dyre
, and
T.
Hecksher
, “
Long-time structural relaxation of glass-forming liquids: Simple or stretched exponential?
,”
J. Chem. Phys.
152
,
041103
(
2020
).
61.
A. J.
Kovacs
, “
Transition vitreuse dans les polymères amorphes. Etude phénoménologique
,”
Fortschr. Hochpolym.-Forsch.
3
,
394
507
(
1964
).
62.
G. B.
McKenna
,
Y.
Leterrier
, and
C. R.
Schultheisz
, “
The evolution of material properties during physical aging
,”
Polym. Eng. Sci.
35
,
403
410
(
1995
).
63.
G. B.
McKenna
, “
Physical aging in glasses and composites
,” in
Long-Term Durability of Polymeric Matrix Composites
, edited by
K. V.
Pochiraju
,
G. P.
Tandon
, and
G. A.
Schoeppner
(
Springer
,
Boston, MA
,
2012
), pp.
237
309
.
64.
C. T.
Moynihan
,
A. J.
Easteal
,
M. A.
DeBolt
, and
J.
Tucker
, “
Dependence of the fictive temperature of glass on cooling rate
,”
J. Am. Ceram. Soc.
59
,
12
16
(
1976
).
65.
L. A.
Roed
,
T.
Hecksher
,
J. C.
Dyre
, and
K.
Niss
, “
Generalized single-parameter aging tests and their application to glycerol
,”
J. Chem. Phys.
150
,
044501
(
2019
).
66.
T.
Hecksher
,
N. B.
Olsen
, and
J. C.
Dyre
, “
Fast contribution to the activation energy of a glass-forming liquid
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
16736
(
2019
).
67.
H. E.
Castillo
and
A.
Parsaeian
, “
Local fluctuations in the ageing of a simple structural glass
,”
Nat. Phys.
3
,
26
28
(
2007
).
68.
R. D.
Leonardo
,
L.
Angelani
,
G.
Parisi
, and
G.
Ruocco
, “
Off-equilibrium effective temperature in monatomic Lennard-Jones glass
,”
Phys. Rev. Lett.
84
,
6054
(
2000
).
69.
N.
Gnan
,
C.
Maggi
,
T. B.
Schrøder
, and
J. C.
Dyre
, “
Predicting the effective temperature of a glass
,”
Phys. Rev. Lett.
104
,
125902
(
2010
).
70.
H. R.
Schober
, “
Modeling aging rates in a simple glass and its melt
,”
Phys. Rev. B
85
,
024204
(
2012
).
You do not currently have access to this content.