The manipulation of low-energy matter properties such as superconductivity, ferromagnetism, and ferroelectricity via cavity quantum electrodynamics engineering has been suggested as a way to enhance these many-body collective phenomena. In this work, we investigate the effective interactions between low-energy matter excitations induced by the off-resonant coupling with cavity electromagnetic modes. We extend a previous work by going beyond the dipole approximation accounting for the full polarization and magnetization densities of matter. We further include the often neglected diamagnetic interaction and, for the cavity, we consider general linear absorbing media with possibly non-local and non-reciprocal response. We demonstrate that, even in this general scenario, the effective cavity-induced interactions between the matter degrees of freedom are of electrostatic and magnetostatic nature. This confirms the necessity of a multimode description for cavity engineering of matter systems where the low-energy assumption holds. Our findings provide a theoretical framework for studying the influence of general optical environments on extended low-energy matter excitations.

1.
P. A. M.
Dirac
, “
The quantum theory of the emission and absorption of radiation
,”
Proc. R. Soc. Lond. A
114
,
243
265
(
1927
).
2.
H. A.
Bethe
, “
The electromagnetic shift of energy levels
,”
Phys. Rev.
72
,
339
(
1947
).
3.
E. M.
Purcell
, “
Spontaneous emission probabilities at radio frequencies
,”
Phys. Rev.
69
,
681
(
1946
).
4.
A. L.
Schawlow
and
C. H.
Townes
, “
Infrared and optical masers
,”
Phys. Rev.
112
,
1940
1949
(
1958
).
5.
A. J.
Shields
, “
Semiconductor quantum light sources
,”
Nat. Photonics
1
,
215
(
2007
).
6.
F. J.
García-Vidal
,
C.
Ciuti
, and
T. W.
Ebbesen
, “
Manipulating matter by strong coupling to vacuum fields
,”
Science
373
,
eabd0336
(
2021
).
7.
F.
Schlawin
,
D. M.
Kennes
, and
M. A.
Sentef
, “
Cavity quantum materials
,”
Appl. Phys. Rev.
9
,
011312
(
2022
).
8.
J.
Kasprzak
,
M.
Richard
,
S.
Kundermann
,
A.
Baas
,
P.
Jeambrun
,
J. M. J.
Keeling
,
F. M.
Marchetti
,
M. H.
Szymańska
,
R.
André
,
J. L.
Staehli
,
V.
Savona
,
P. B.
Littlewood
,
B.
Deveaud
, and
L. S.
Dang
, “
Bose-Einstein condensation of exciton polaritons
,”
Nature
443
,
409
(
2006
).
9.
K. S.
Daskalakis
,
S. A.
Maier
,
R.
Murray
, and
S.
Kéna-Cohen
, “
Nonlinear interactions in an organic polariton condensate
,”
Nat. Mater.
13
,
271
(
2014
).
10.
M.
Ramezani
,
A.
Halpin
,
A. I.
Fernández-Domínguez
,
J.
Feist
,
S. R.-K.
Rodriguez
,
F. J.
Garcia-Vidal
, and
J.
Gómez Rivas
, “
Plasmon-exciton-polariton lasing
,”
Optica
4
,
31
(
2017
).
11.
J. A.
Hutchison
,
T.
Schwartz
,
C.
Genet
,
E.
Devaux
, and
T. W.
Ebbesen
, “
Modifying chemical landscapes by coupling to vacuum fields
,”
Angew. Chem., Int. Ed.
51
,
1592
(
2012
).
12.
K.
Nagarajan
,
A.
Thomas
, and
T. W.
Ebbesen
, “
Chemistry under vibrational strong coupling
,”
J. Am. Chem. Soc.
143
,
16877
16889
(
2021
).
13.
J.
Feist
and
F. J.
Garcia-Vidal
, “
Extraordinary exciton conductance induced by strong coupling
,”
Phys. Rev. Lett.
114
,
196402
(
2015
).
14.
J.
Schachenmayer
,
C.
Genes
,
E.
Tignone
, and
G.
Pupillo
, “
Cavity-enhanced transport of excitons
,”
Phys. Rev. Lett.
114
,
196403
(
2015
).
15.
G.
Lerario
,
D.
Ballarini
,
A.
Fieramosca
,
A.
Cannavale
,
A.
Genco
,
F.
Mangione
,
S.
Gambino
,
L.
Dominici
,
M.
De Giorgi
,
G.
Gigli
, and
D.
Sanvitto
, “
High-speed flow of interacting organic polaritons
,”
Light: Sci. Appl.
6
,
e16212
(
2016
).
16.
S.
Hou
,
M.
Khatoniar
,
K.
Ding
,
Y.
Qu
,
A.
Napolov
,
V. M.
Menon
, and
S. R.
Forrest
, “
Ultralong-range energy transport in a disordered organic semiconductor at room temperature via coherent exciton-polariton propagation
,”
Adv. Mater.
32
,
2002127
(
2020
).
17.
D. M.
Coles
,
N.
Somaschi
,
P.
Michetti
,
C.
Clark
,
P. G.
Lagoudakis
,
P. G.
Savvidis
, and
D. G.
Lidzey
, “
Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity
,”
Nat. Mater.
13
,
712
(
2014
).
18.
G.
Groenhof
,
C.
Climent
,
J.
Feist
,
D.
Morozov
, and
J. J.
Toppari
, “
Tracking polariton relaxation with multiscale molecular dynamics simulations
,”
J. Phys. Chem. Lett.
10
,
5476
(
2019
).
19.
C. A.
Downing
,
T. J.
Sturges
,
G.
Weick
,
M.
Stobińska
, and
L.
Martín-Moreno
, “
Topological phases of polaritons in a cavity waveguide
,”
Phys. Rev. Lett.
123
,
217401
(
2019
).
20.
G. L.
Paravicini-Bagliani
,
F.
Appugliese
,
E.
Richter
,
F.
Valmorra
,
J.
Keller
,
M.
Beck
,
N.
Bartolo
,
C.
Rössler
,
T.
Ihn
,
K.
Ensslin
,
C.
Ciuti
,
G.
Scalari
, and
J.
Faist
, “
Magneto-transport controlled by Landau polariton states
,”
Nat. Phys.
15
,
186
190
(
2019
).
21.
F.
Appugliese
,
J.
Enkner
,
G. L.
Paravicini-Bagliani
,
M.
Beck
,
C.
Reichl
,
W.
Wegscheider
,
G.
Scalari
,
C.
Ciuti
, and
J.
Faist
, “
Breakdown of topological protection by cavity vacuum fields in the integer quantum Hall effect
,”
Science
375
,
1030
1034
(
2022
).
22.
J.
Enkner
,
L.
Graziottoa
,
D.
Boriçi
,
F.
Appugliese
,
C.
Reichla
,
G.
Scalari
,
N.
Regnaulta
,
W.
Wegscheider
,
C.
Ciuti
, and
J.
Faist
, “
Enhanced fractional quantum Hall gaps in a two-dimensional electron gas coupled to a hovering split-ring resonator
,” arXiv:2405.18362 (
2024
).
23.
G.
Jarc
,
S. Y.
Mathengattil
,
A.
Montanaro
,
F.
Giusti
,
E. M.
Rigoni
,
R.
Sergo
,
F.
Fassioli
,
S.
Winnerl
,
S.
Dal Zilio
,
D.
Mihailovic
,
P.
Prelovšek
,
M.
Eckstein
, and
D.
Fausti
, “
Cavity-mediated thermal control of metal-to-insulator transition in 1T-TaS2
,”
Nature
622
,
487
(
2023
).
24.
K.
Kim
,
B.
Song
,
V.
Fernández-Hurtado
,
W.
Lee
,
W.
Jeong
,
L.
Cui
,
D.
Thompson
,
J.
Feist
,
M. T. H.
Reid
,
F. J.
García-Vidal
,
J. C.
Cuevas
,
E.
Meyhofer
, and
P.
Reddy
, “
Radiative heat transfer in the extreme near field
,”
Nature
528
,
387
(
2015
).
25.
M. A.
Sentef
,
M.
Ruggenthaler
, and
A.
Rubio
, “
Cavity quantum-electrodynamical polaritonically enhanced electron-phonon coupling and its influence on superconductivity
,”
Sci. Adv.
4
,
eaau6969
(
2018
).
26.
F.
Schlawin
,
A.
Cavalleri
, and
D.
Jaksch
, “
Cavity-mediated electron-photon superconductivity
,”
Phys. Rev. Lett.
122
,
133602
(
2019
).
27.
J. B.
Curtis
,
Z. M.
Raines
,
A. A.
Allocca
,
M.
Hafezi
, and
V. M.
Galitski
, “
Cavity quantum Eliashberg enhancement of superconductivity
,”
Phys. Rev. Lett.
122
,
167002
(
2019
).
28.
D.
Hagenmüller
,
J.
Schachenmayer
,
C.
Genet
,
T. W.
Ebbesen
, and
G.
Pupillo
, “
Enhancement of the electron–phonon scattering induced by intrinsic surface plasmon–phonon polaritons
,”
ACS Photonics
6
,
1073
1081
(
2019
).
29.
V. K.
Kozin
,
E.
Thingstad
,
D.
Loss
, and
J.
Klinovaja
, “
Cavity-enhanced superconductivity via band engineering
,” arXiv:2405.08642 (
2024
).
30.
G. M.
Andolina
,
A.
De Pasquale
,
F. M. D.
Pellegrino
,
I.
Torre
,
F. H. L.
Koppens
, and
M.
Polini
, “
Amperean superconductivity cannot be induced by deep subwavelength cavities in a two-dimensional material
,”
Phys. Rev. B
109
,
104513
(
2024
).
31.
J.
Román-Roche
,
F.
Luis
, and
D.
Zueco
, “
Photon condensation and enhanced magnetism in cavity QED
,”
Phys. Rev. Lett.
127
,
167201
(
2021
).
32.
A.
Thomas
,
E.
Devaux
,
K.
Nagarajan
,
G.
Rogez
,
M.
Seidel
,
F.
Richard
,
C.
Genet
,
M.
Drillon
, and
T. W.
Ebbesen
, “
Large enhancement of ferromagnetism under a collective strong coupling of YBCO nanoparticles
,”
Nano Lett.
21
,
4365
4370
(
2021
).
33.
Y.
Ashida
,
A. m. c.
İmamoğlu
,
J.
Faist
,
D.
Jaksch
,
A.
Cavalleri
, and
E.
Demler
, “
Quantum electrodynamic control of matter: Cavity-enhanced ferroelectric phase transition
,”
Phys. Rev. X
10
,
041027
(
2020
).
34.
S.
Latini
,
D.
Shin
,
S. A.
Sato
,
C.
Schäfer
,
U.
De Giovannini
,
H.
Hübener
, and
A.
Rubio
, “
The ferroelectric photo ground state of SrTiO3: Cavity materials engineering
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2105618118
(
2021
).
35.
K.
Lenk
,
J.
Li
,
P.
Werner
, and
M.
Eckstein
, “
Dynamical mean-field study of a photon-mediated ferroelectric phase transition
,”
Phys. Rev. B
106
,
245124
(
2022
).
36.
C.
Jiang
,
M.
Baggioli
, and
Q.-D.
Jiang
, “
Engineering flat bands in twisted-bilayer graphene away from the magic angle with chiral optical cavities
,”
Phys. Rev. Lett.
132
,
166901
(
2024
).
37.
K.
Masuki
and
Y.
Ashida
, “
Cavity moiré materials: Controlling magnetic frustration with quantum light-matter interaction
,”
Phys. Rev. B
109
,
195173
(
2024
).
38.
R.
Riolo
,
A.
Tomadin
,
G.
Mazza
,
R.
Asgari
,
A. H.
MacDonald
, and
M.
Polini
, “
Tuning fermi liquids with sub-wavelength cavities
,” arXiv:2403.20067 [cond-mat.str-el] (
2024
).
39.
P.-A.
Pantazopoulos
,
J.
Feist
,
A.
Kamra
, and
F. J.
García-Vidal
, “
Electrostatic nature of cavity-mediated interactions between low-energy matter excitations
,”
Phys. Rev. B
109
,
L201408
(
2024
).
40.
P.
Barcellona
,
R.
Bennett
, and
S. Y.
Buhmann
, “
Manipulating the Coulomb interaction: A Green’s function perspective
,”
J. Phys. Commun.
2
,
035027
(
2018
).
41.
J.
Román-Roche
and
D.
Zueco
, “
Effective theory for matter in non-perturbative cavity QED
,”
SciPost Phys. Lect. Notes
2022
,
50
.
42.
P. A.
Pantazopoulos
,
J.
Feist
,
F. J.
García-Vidal
, and
A.
Kamra
, “
Unconventional magnetism mediated by spin-phonon-photon coupling
,”
Nat. Commun.
15
,
4000
(
2024
).
43.
A.
González-Tudela
,
A.
Reiserer
,
J. J.
García-Ripoll
, and
F. J.
García-Vidal
, “
Light–matter interactions in quantum nanophotonic devices
,”
Nat. Rev. Phys.
6
,
166
179
(
2024
).
44.
J.
Huang
,
O. S.
Ojambati
,
C.
Climent
,
A.
Cuartero-Gonzalez
,
E.
Elliott
,
J.
Feist
,
A. I.
Fernández-Domínguez
, and
J. J.
Baumberg
, “
Influence of quadrupolar molecular transitions within plasmonic cavities
,”
ACS Nano
18
,
14487
14495
(
2024
).
45.
S.
Scheel
and
S. Y.
Buhmann
, “
Macroscopic quantum electrodynamics—Concepts and applications
,”
Acta Physica Slovaca. Reviews and Tutorials
58
,
675
(
2008
).
46.
S. Y.
Buhmann
,
Dispersion Forces I
,
Springer Tracts in Modern Physics
(
Springer
,
Berlin, Heidelberg
,
2012
), Vol.
247
.
47.
B.
Huttner
and
S. M.
Barnett
, “
Quantization of the electromagnetic field in dielectrics
,”
Phys. Rev. A
46
,
4306
(
1992
).
48.
E. A.
Power
and
S.
Zienau
, “
Coulomb gauge in non-relativistic quantum electro-dynamics and the shape of spectral lines
,”
Philos. Trans. R. Soc. London A
251
,
427
(
1959
).
49.
C.
Baxter
,
M.
Babiker
, and
R.
Loudon
, “
Canonical approach to photon pressure
,”
Phys. Rev. A
47
,
1278
1287
(
1993
).
50.
W. P.
Healy
, “
The representation of microscopic charge and current densities in terms of polarization and magnetization fields
,”
Philos. Trans. R. Soc. London A
358
,
367
383
(
1978
).
51.
P.
Coleman
,
Introduction to Many-Body Physics
(
Cambridge University Press
,
2015
).
52.
S. Y.
Buhmann
,
D. T.
Butcher
, and
S.
Scheel
, “
Macroscopic quantum electrodynamics in nonlocal and nonreciprocal media
,”
New J. Phys.
14
,
083034
(
2012
).
53.
C.
Ciracì
,
J. B.
Pendry
, and
D. R.
Smith
, “
Hydrodynamic model for plasmonics: A macroscopic approach to a microscopic problem
,”
ChemPhysChem
14
,
1109
(
2013
).
54.
S.
Haroche
, “
A short history of cavity quantum electrodynamics
,” in
Conference on Coherence and Quantum Optics
(
Optica Publishing Group
,
2007
), p.
CTuF2
.
55.
J.
Franklin
, “
Comment on “Some novel delta-function identities” by Charles P. Frahm [Am. J. Phys. 51, 826–829 (1983)]
,”
Am. J. Phys.
78
,
1225
1226
(
2010
).
56.
H. T.
Dung
,
S. Y.
Buhmann
,
L.
Knöll
,
D.-G.
Welsch
,
S.
Scheel
, and
J.
Kästel
, “
Electromagnetic-field quantization and spontaneous decay in left-handed media
,”
Phys. Rev. A
68
,
043816
(
2003
).
You do not currently have access to this content.