Molecular dynamics (MD) simulations based on detailed all-atom models offer a powerful approach to study the structure and dynamics of biological membranes. However, the complexity of biological membranes in terms of chemical diversity presents an outstanding challenge. Particularly, difficulties are encountered when a given lipid type is present at very low abundance. While considering a very large simulation system with a small number of the low abundance lipid may offer a practical solution in some cases, resorting to increasingly large system rapidly becomes computationally costly and impractical. More fundamentally, an additional issue may be encountered if the low abundance lipid displays a high affinity for some protein in the simulation system. What is needed is to treat the simulation box as an open system in which the number of lipids can naturally fluctuate, as in the Grand Canonical Monte Carlo (MC) algorithm. However, this approach, in which a whole lipid molecule needs to be inserted or annihilated, is essentially impractical in the context of an all-atom simulation. To enforce equilibrium between a simulated system and an infinite surrounding bath, we propose a hybrid non-equilibrium (neMD)–MC algorithm, in which a randomly chosen lipid molecule in the simulated system is swapped with a lipid picked in a separate system standing as a thermodynamic “reservoir” with the desired mole fraction for all lipid components. The neMD/MC algorithm consists in driving the system via short non-equilibrium trajectories to generate a new state of the system that are subsequently accepted or rejected via a Metropolis MC step. The probability of exchanges in the context of an infinite reservoir with the desired mole fraction for all lipid components is derived and tested with a few illustrative systems for phosphatidylcholine and phosphatidylglycerol lipid mixtures.

1.
H.
Watson
, “
Biological membranes
,”
Essays Biochem.
59
,
43
69
(
2015
).
2.
E.
Wallin
and
G. V.
Heijne
, “
Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms: Membrane protein topology
,”
Protein Sci.
7
(
4
),
1029
1038
(
1998
).
3.
W.
Dowhan
, “
Molecular basis for membrane phospholipid diversity: Why are there so many lipids?
,”
Annu. Rev. Biochem.
66
(
1
),
199
232
(
1997
).
4.
G.
van Meer
,
D. R.
Voelker
, and
G. W.
Feigenson
, “
Membrane lipids: Where they are and how they behave
,”
Nat. Rev. Mol. Cell Biol.
9(
2
),
112
124
(
2008
).
5.
A.
Laganowsky
,
E.
Reading
,
T. M.
Allison
,
M. B.
Ulmschneider
,
M. T.
Degiacomi
,
A. J.
Baldwin
, and
C. V.
Robinson
, “
Membrane proteins bind lipids selectively to modulate their structure and function
,”
Nature
510
(
7503
),
172
175
(
2014
).
6.
C. M.
Hénault
,
C.
Govaerts
,
R.
Spurny
,
M.
Brams
,
A.
Estrada-Mondragon
,
J.
Lynch
,
D.
Bertrand
,
E.
Pardon
,
G. L.
Evans
,
K.
Woods
,
B. W.
Elberson
,
L. G.
Cuello
,
G.
Brannigan
,
H.
Nury
,
J.
Steyaert
,
J. E.
Baenziger
, and
C.
Ulens
, “
A lipid site shapes the agonist response of a pentameric ligand-gated ion channel
,”
Nat. Chem. Biol.
15
(
12
),
1156
1164
(
2019
).
7.
T.
Harayama
and
H.
Riezman
, “
Understanding the diversity of membrane lipid composition
,”
Nat. Rev. Mol. Cell Biol.
19
(
5
),
281
296
(
2018
).
8.
E.
Sezgin
,
I.
Levental
,
S.
Mayor
, and
C.
Eggeling
, “
The mystery of membrane organization: Composition, regulation and roles of lipid rafts
,”
Nat. Rev. Mol. Cell Biol.
18
(
6
),
361
374
(
2017
).
9.
W.
Szlasa
,
I.
Zendran
,
A.
Zalesińska
,
M.
Tarek
, and
J.
Kulbacka
, “
Lipid composition of the cancer cell membrane
,”
J. Bioenerg. Biomembr.
52
(
5
),
321
342
(
2020
).
10.
J.
Kopitz
, “
Lipid glycosylation: A primer for histochemists and cell biologists
,”
Histochem. Cell Biol.
147
(
2
),
175
198
(
2017
).
11.
J. H.
Lorent
,
K. R.
Levental
,
L.
Ganesan
,
G.
Rivera-Longsworth
,
E.
Sezgin
,
M.
Doktorova
,
E.
Lyman
, and
I.
Levental
, “
Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape
,”
Nat. Chem. Biol.
16
(
6
),
644
652
(
2020
).
12.
J. L.
Symons
,
K. J.
Cho
,
J. T.
Chang
,
G.
Du
,
M. N.
Waxham
,
J. F.
Hancock
,
I.
Levental
, and
K. R.
Levental
, “
Lipidomic atlas of mammalian cell membranes reveals hierarchical variation induced by culture conditions, subcellular membranes, and cell lineages
,”
Soft Matter
17
(
2
),
288
297
(
2021
).
13.
K.
Goossens
and
H.
De Winter
, “
Molecular dynamics simulations of membrane proteins: An overview
,”
J. Chem. Inf. Model.
58
(
11
),
2193
2202
(
2018
).
14.
M.
Rose
,
N.
Hirmiz
,
J.
Moran-Mirabal
, and
C.
Fradin
, “
Lipid diffusion in supported lipid bilayers: A comparison between line-scanning fluorescence correlation spectroscopy and single-particle tracking
,”
Membranes
5
(
4
),
702
721
(
2015
).
15.
M. P.
Muller
,
T.
Jiang
,
C.
Sun
,
M.
Lihan
,
S.
Pant
,
P.
Mahinthichaichan
,
A.
Trifan
, and
E.
Tajkhorshid
, “
Characterization of lipid–protein interactions and lipid-mediated modulation of membrane protein function through molecular simulation
,”
Chem. Rev.
119
(
9
),
6086
6161
(
2019
).
16.
T.
Mori
,
N.
Miyashita
,
W.
Im
,
M.
Feig
, and
Y.
Sugita
, “
Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms
,”
Biochim. Biophys. Acta, Biomembr.
1858
(
7
),
1635
1651
(
2016
).
17.
K.
Huang
and
A. E.
García
, “
Acceleration of lateral equilibration in mixed lipid bilayers using replica exchange with solute tempering
,”
J. Chem. Theory Comput.
10
(
10
),
4264
4272
(
2014
).
18.
T.
Mori
,
J.
Jung
, and
Y.
Sugita
, “
Surface-tension replica-exchange molecular dynamics method for enhanced sampling of biological membrane systems
,”
J. Chem. Theory Comput.
9
(
12
),
5629
5640
(
2013
).
19.
S. J.
Marrink
,
V.
Corradi
,
P. C. T.
Souza
,
H. I.
Ingólfsson
,
D. P.
Tieleman
, and
M. S. P.
Sansom
, “
Computational modeling of realistic cell membranes
,”
Chem. Rev.
119
(
9
),
6184
6226
(
2019
).
20.
H. I.
Ingólfsson
,
M. N.
Melo
,
F. J.
van Eerden
,
C.
Arnarez
,
C. A.
Lopez
,
T. A.
Wassenaar
,
X.
Periole
,
A. H.
de Vries
,
D. P.
Tieleman
, and
S. J.
Marrink
, “
Lipid organization of the plasma membrane
,”
J. Am. Chem. Soc.
136
(
41
),
14554
14559
(
2014
).
21.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefimov
,
D. P.
Tieleman
, and
A. H.
de Vries
, “
The MARTINI force field: Coarse grained model for biomolecular simulations
,”
J. Phys. Chem. B
111
(
27
),
7812
7824
(
2007
).
22.
V.
Corradi
,
B. I.
Sejdiu
,
H.
Mesa-Galloso
,
H.
Abdizadeh
,
S. Y.
Noskov
,
S. J.
Marrink
, and
D. P.
Tieleman
, “
Emerging diversity in lipid–protein interactions
,”
Chem. Rev.
119
(
9
),
5775
5848
(
2019
).
23.
M.
Mezei
, “
Grand-canonical ensemble Monte Carlo study of dense liquid: Lennard-Jones, soft spheres and water
,”
Mol. Phys.
61
(
3
),
565
582
(
1987
).
24.
M.
Mezei
, “
A cavity-biased (T, V, μ) Monte Carlo method for the computer simulation of fluids
,”
Mol. Phys.
40
(
4
),
901
906
(
1980
).
25.
P.
Jedlovszky
and
M.
Mezei
, “
Grand canonical ensemble Monte Carlo simulation of a lipid bilayer using extension biased rotations
,”
J. Chem. Phys.
111
(
24
),
10770
10773
(
1999
).
26.
H.
Woo
,
A.
Dinner
, and
B.
Roux
, “
Grand canonical Monte Carlo simulations of water in protein environments
,”
J. Chem. Phys.
121
,
6392
6400
(
2004
).
27.
Y. Q.
Deng
and
B.
Roux
, “
Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations
,”
J. Chem. Phys.
128
,
115103
(
2008
).
28.
F.
Szczepaniak
,
F.
Dehez
, and
B.
Roux
, “
Configurational sampling of all-atom solvated membranes using hybrid nonequilibrium molecular dynamics Monte Carlo simulations
,”
J. Phys. Chem. Lett.
15
(
14
),
3796
3804
(
2024
).
29.
J. P.
Nilmeier
,
G. E.
Crooks
,
D. D. L.
Minh
, and
J. D.
Chodera
, “
Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation
,”
Proc. Natl. Acad. Sci. U. S. A.
108
(
45
),
E1009
E1018
(
2011
).
30.
Y.
Chen
and
B.
Roux
, “
Efficient hybrid non-equilibrium molecular dynamics–Monte Carlo simulations with symmetric momentum reversal
,”
J. Chem. Phys.
141
(
11
),
114107
(
2014
).
31.
Y.
Chen
and
B.
Roux
, “
Generalized Metropolis acceptance criterion for hybrid non-equilibrium molecular dynamics—Monte Carlo simulations
,”
J. Chem. Phys.
142
(
2
),
024101
(
2015
).
32.
B. K.
Radak
and
B.
Roux
, “
Efficiency in nonequilibrium molecular dynamics Monte Carlo simulations
,”
J. Chem. Phys.
145
(
13
),
134109
(
2016
).
33.
H. A.
Stern
, “
Molecular simulation with variable protonation states at constant pH
,”
J. Chem. Phys.
126
(
16
),
164112
(
2007
).
34.
M.
Athenes
, “
Computation of a chemical potential using a residence weight algorithm
,”
Phys. Rev. E
66
(
4
),
046705
(
2002
).
35.
Y.
Chen
,
S.
Kale
,
J.
Weare
,
A. R.
Dinner
, and
B.
Roux
, “
Multiple time-step dual-Hamiltonian hybrid molecular dynamics–Monte Carlo canonical propagation algorithm
,”
J. Chem. Theory Comput.
12
(
4
),
1449
1458
(
2016
).
36.
Y.
Chen
and
B.
Roux
, “
Enhanced sampling of an atomic model with hybrid nonequilibrium molecular dynamics—Monte Carlo simulations guided by a coarse-grained model
,”
J. Chem. Theory Comput.
11
(
8
),
3572
3583
(
2015
).
37.
Y.
Chen
and
B.
Roux
, “
Constant-pH hybrid nonequilibrium molecular dynamics–Monte Carlo simulation method
,”
J. Chem. Theory Comput.
11
(
8
),
3919
3931
(
2015
).
38.
B. K.
Radak
,
C.
Chipot
,
D.
Suh
,
S.
Jo
,
W.
Jiang
,
J. C.
Phillips
,
K.
Schulten
, and
B.
Roux
, “
Constant-pH molecular dynamics simulations for large biomolecular systems
,”
J. Chem. Theory Comput.
13
(
12
),
5933
5944
(
2017
).
39.
D.
Suh
,
B. K.
Radak
,
C.
Chipot
, and
B.
Roux
, “
Enhanced configurational sampling with hybrid non-equilibrium molecular dynamics–Monte Carlo propagator
,”
J. Chem. Phys.
148
(
1
),
014101
(
2018
).
40.
S. C.
Gill
,
N. M.
Lim
,
P. B.
Grinaway
,
A. S.
Rustenburg
,
J.
Fass
,
G. A.
Ross
,
J. D.
Chodera
, and
D. L.
Mobley
, “
Binding modes of ligands using enhanced sampling (BLUES): Rapid decorrelation of ligand binding modes via nonequilibrium candidate Monte Carlo
,”
J. Phys. Chem. B
122
(
21
),
5579
5598
(
2018
).
41.
G. A.
Ross
,
A. S.
Rustenburg
,
P. B.
Grinaway
,
J.
Fass
, and
J. D.
Chodera
, “
Biomolecular simulations under realistic macroscopic salt conditions
,”
J. Phys. Chem. B
122
(
21
),
5466
5486
(
2018
).
42.
A. d.
Izarra
,
F.-X.
Coudert
,
A. H.
Fuchs
, and
A.
Boutin
, “
Alchemical osmostat for Monte Carlo simulation: Sampling aqueous electrolyte solution in open systems
,”
J. Phys. Chem. B
127
(
3
),
766
776
(
2023
).
43.
J.
de Joannis
,
Y.
Jiang
,
F.
Yin
, and
J. T.
Kindt
, “
Equilibrium distributions of dipalmitoyl phosphatidylcholine and dilauroyl phosphatidylcholine in a mixed lipid bilayer: Atomistic semigrand canonical ensemble simulations
,”
J. Phys. Chem. B
110
(
51
),
25875
25882
(
2006
).
44.
P. S.
Coppock
and
J. T.
Kindt
, “
Atomistic simulations of mixed-lipid bilayers in gel and fluid phases
,”
Langmuir
25
(
1
),
352
359
(
2009
).
45.
J. T.
Kindt
, “
Atomistic simulation of mixed-lipid bilayers: Mixed methods for mixed membranes
,”
Mol. Simul.
37
(
7
),
516
524
(
2011
).
46.
A.
Fathizadeh
and
R.
Elber
, “
A mixed alchemical and equilibrium dynamics to simulate heterogeneous dense fluids: Illustrations for Lennard-Jones mixtures and phospholipid membranes
,”
J. Chem. Phys.
149
(
7
),
072325
(
2018
).
47.
A.
Fathizadeh
,
M.
Valentine
,
C. R.
Baiz
, and
R.
Elber
, “
Phase transition in a heterogeneous membrane: Atomically detailed picture
,”
J. Phys. Chem. Lett.
11
(
13
),
5263
5267
(
2020
).
48.
Y. K.
Cherniavskyi
,
A.
Fathizadeh
,
R.
Elber
, and
D. P.
Tieleman
, “
Computer simulations of a heterogeneous membrane with enhanced sampling techniques
,”
J. Chem. Phys.
153
(
14
),
144110
(
2020
).
49.
W.
Im
,
S.
Seefeld
, and
B.
Roux
, “
A grand canonical Monte Carlo–Brownian dynamics algorithm for simulating ion channels
,”
Biophys. J.
79
,
788
801
(
2000
).
50.
J.
Lee
,
X.
Cheng
,
J. M.
Swails
,
M. S.
Yeom
,
P. K.
Eastman
,
J. A.
Lemkul
,
S.
Wei
,
J.
Buckner
,
J. C.
Jeong
,
Y.
Qi
,
S.
Jo
,
V. S.
Pande
,
D. A.
Case
,
C. L.
Brooks
,
A. D.
MacKerell
,
J. B.
Klauda
, and
W.
Im
, “
CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field
,”
J. Chem. Theory Comput.
12
(
1
),
405
413
(
2016
).
51.
J.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R.
Skeel
,
L.
Kale
, and
K.
Schulten
, “
Scalable molecular dynamics with NAMD
,”
J. Comput. Chem.
26
,
1781
1802
(
2005
).
52.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
935
(
1983
).
53.
R. B.
Best
,
X.
Zhu
,
J.
Shim
,
P. E.
Lopes
,
J.
Mittal
,
M.
Feig
, and
A. D.
Mackerell
, “
Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone Φ, Ψ and side-chain χ1 and χ2 dihedral angles
,”
J. Chem. Theory Comput.
8
(
9
),
3257
3273
(
2012
).
54.
S.
Feller
,
Y.
Zhang
,
R.
Pastor
, and
B.
Brooks
, “
Constant pressure molecular dynamics simulation: The Langevin piston method
,”
J. Chem. Phys.
103
,
4613
4621
(
1995
).
55.
P.
Procacci
,
T.
Darden
, and
M.
Marchi
, “
A very fast molecular dynamics method to simulate biomolecular systems with realistic electrostatic interactions
,”
J. Phys. Chem.
100
,
10464
10468
(
1996
).
56.
J.
Ryckaert
,
G.
Ciccotti
, and
H.
Berendsen
, “
Numerical integration of the Cartesian equation of motions of a system with constraints: Molecular dynamics of n-alkanes
,”
J. Comput. Phys.
23
,
327
341
(
1977
).
57.
H.
Andersen
, “
Rattle: A ‘velocity’ version of the shake algorithm for molecular dynamics calculations
,”
J. Comput. Phys.
52
,
24
34
(
1983
).
58.
S.
Miyamoto
and
P. A.
Kollman
, “
Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models
,”
J. Comput. Chem.
13
(
8
),
952
962
(
1992
).
59.
C. W.
Hopkins
,
S.
Le Grand
,
R. C.
Walker
, and
A. E.
Roitberg
, “
Long-time-step molecular dynamics through hydrogen mass repartitioning
,”
J. Chem. Theory Comput.
11
(
4
),
1864
1874
(
2015
).
60.
M.
Zacharias
,
T. P.
Straatsma
, and
J. A.
McCammon
, “
Separation-shifted scaling, a new scaling method for Lennard-Jones interactions in thermodynamic integration
,”
J. Chem. Phys.
100
(
12
),
9025
9031
(
1994
).
61.
T. C.
Beutler
,
A. E.
Mark
,
R. C.
van Schaik
,
P. R.
Gerber
, and
W. F.
van Gunsteren
, “
Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations
,”
Chem. Phys. Lett.
222
(
6
),
529
539
(
1994
).
62.
G.
Van Den Bogaart
,
K.
Meyenberg
,
H. J.
Risselada
,
H.
Amin
,
K. I.
Willig
,
B. E.
Hubrich
,
M.
Dier
,
S. W.
Hell
,
H.
Grubmüller
,
U.
Diederichsen
, and
R.
Jahn
, “
Membrane protein sequestering by ionic protein–lipid interactions
,”
Nature
479
(
7374
),
552
555
(
2011
).
63.
K.
Mandal
, “
Review of PIP2 in cellular signaling, functions and diseases
,”
Int. J. Mol. Sci.
21
(
21
),
8342
(
2020
).
You do not currently have access to this content.