Transient absorption (TA) spectroscopy is one of the most popular experimental methods to measure the excited state lifetimes and charge carrier recombination mechanisms in two dimensional (2D) semiconductors. This fundamental information is essential for designing and optimizing the next generation of ultrathin and lightweight 2D semiconductor-based optoelectronic devices. However, the interpretation of TA spectroscopy data varies across the community. The community lacks a unifying physical explanation for how and why experimental variables such as incident light intensity, sample-substrate interactions, and/or applied bias affect TA spectral data. This Perspective (1) compares the physical chemistry TA literature to nanomaterial physics literature from a historical perspective, (2) reviews multiple physical explanations that the TA community developed to explain spectral features and experimental trends, (3) provides a unifying explanation for how and why trions—and, more generally, Fermi polarons—contribute to TA spectra, and (4) quantifies the extent to which various physical interpretations and data analysis procedures yield different timescales and mechanisms for the same set of experimental results. We highlight the importance of considering trions/Fermi polarons in TA measurements and their implications for advancing our understanding of 2D material properties.

1.
C.
Wadia
,
A. P.
Alivisatos
, and
D. M.
Kammen
, “
Materials availability expands the opportunity for large-scale photovoltaics deployment
,”
Environ. Sci. Technol.
43
(
6
),
2072
2077
(
2009
).
2.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
, “
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
,”
Nat. Nanotechnol.
7
(
11
),
699
712
(
2012
).
3.
H. S.
Lee
,
M. S.
Kim
,
H.
Kim
, and
Y. H.
Lee
, “
Identifying multiexcitons in MoS2 monolayers at room temperature
,”
Phys. Rev. B
93
(
14
),
140409
(
2016
).
4.
I.
Kylänpää
and
H. P.
Komsa
, “
Binding energies of exciton complexes in transition metal dichalcogenide monolayers and effect of dielectric environment
,”
Phys. Rev. B
92
(
20
),
205418
(
2015
).
5.
Y.
You
,
X. X.
Zhang
,
T. C.
Berkelbach
,
M. S.
Hybertsen
,
D. R.
Reichman
, and
T. F.
Heinz
, “
Observation of biexcitons in monolayer WSe2
,”
Nat. Phys.
11
(
6
),
477
481
(
2015
).
6.
R.
Rosati
,
I.
Paradisanos
,
E.
Malic
, and
B.
Urbaszek
, “
Two dimensional semiconductors: Optical and electronic properties
,” arXiv:2405.04222 (
2024
).
7.
M. A.
Lampert
, “
Mobile and immobile effective-mass-particle complexes in nonmetallic solids
,”
Phys. Rev. Lett.
1
(
12
),
450
453
(
1958
).
8.
S.
Dal Conte
,
C.
Trovatello
,
C.
Gadermaier
, and
G.
Cerullo
, “
Ultrafast photophysics of 2D semiconductors and related heterostructures
,”
Trends Chem.
2
(
1
),
28
42
(
2020
).
9.
G.
Moody
,
J.
Schaibley
, and
X.
Xu
, “
Exciton dynamics in monolayer transition metal dichalcogenides
,”
J. Opt. Soc. Am. B
33
,
C39
(
2016
).
10.
P. D.
Cunningham
,
K. M.
McCreary
,
A. T.
Hanbicki
,
M.
Currie
,
B. T.
Jonker
, and
L. M.
Hayden
, “
Charge trapping and exciton dynamics in large-area CVD grown MoS2
,”
J. Phys. Chem. C
120
(
10
),
5819
5826
(
2016
).
11.
H.
Shi
,
R.
Yan
,
S.
Bertolazzi
,
J.
Brivio
,
B.
Gao
,
A.
Kis
,
D.
Jena
,
H. G.
Xing
, and
L.
Huang
, “
Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals
,”
ACS Nano
7
(
2
),
1072
1080
(
2013
).
12.
J.
Yuson
,
D.
Contreras
,
M.
Achterman
,
E.
Jung
, and
A.
Boulesbaa
, “
Dynamics of exciton formation, recombination, and trapping in monolayers of 2D-TMD materials
,”
Proc. SPIE
11990
,
1199005
(
2022
).
13.
Y.
Li
,
X.
Wu
,
W.
Liu
,
H.
Xu
, and
X.
Liu
, “
Revealing the interrelation between C- and A-exciton dynamics in monolayer WS2 via transient absorption spectroscopy
,”
Appl. Phys. Lett.
119
(
5
),
051106
(
2021
).
14.
B.
Kaviraj
and
D.
Sahoo
, “
Physics of excitons and their transport in two dimensional transition metal dichalcogenide semiconductors
,”
RSC Adv.
9
(
44
),
25439
25461
(
2019
).
15.
C.
Trovatello
,
F.
Katsch
,
N. J.
Borys
,
M.
Selig
,
K.
Yao
,
R.
Borrego-Varillas
,
F.
Scotognella
,
I.
Kriegel
,
A.
Yan
,
A.
Zettl
,
P. J.
Schuck
,
A.
Knorr
,
G.
Cerullo
, and
S. D.
Conte
, “
The ultrafast onset of exciton formation in 2D semiconductors
,”
Nat. Commun.
11
(
1
),
5277
(
2020
).
16.
N. S.
Ginsberg
and
W. A.
Tisdale
, “
Spatially resolved photogenerated exciton and charge transport in emerging semiconductors
,”
Annu. Rev. Phys. Chem.
71
(
1
),
1
(
2020
).
17.
J.
Zhao
,
W.
Zhao
,
W.
Du
,
R.
Su
, and
Q.
Xiong
, “
Dynamics of exciton energy renormalization in monolayer transition metal disulfides
,”
Nano Res.
13
(
5
),
1399
1405
(
2020
).
18.
E. J.
Sie
,
A.
Steinhoff
,
C.
Gies
,
C. H.
Lui
,
Q.
Ma
,
M.
Rösner
,
G.
Schönhoff
,
F.
Jahnke
,
T. O.
Wehling
,
Y. H.
Lee
,
J.
Kong
,
P.
Jarillo-Herrero
, and
N.
Gedik
, “
Observation of exciton redshift-blueshift crossover in monolayer WS2
,”
Nano Lett.
17
(
7
),
4210
4216
(
2017
).
19.
S.
Brem
,
M.
Selig
,
G.
Berghaeuser
, and
E.
Malic
, “
Exciton relaxation cascade in two-dimensional transition metal dichalcogenides
,”
Sci. Rep.
8
(
1
),
8238
(
2018
).
20.
S.
Sim
,
J.
Park
,
J. G.
Song
,
C.
In
,
Y. S.
Lee
,
H.
Kim
, and
H.
Choi
, “
Exciton dynamics in atomically thin MoS2: Interexcitonic interaction and broadening kinetics
,”
Phys. Rev. B
88
(
7
),
075434
(
2013
).
21.
L.
Wang
,
Z.
Wang
,
H. Y.
Wang
,
G.
Grinblat
,
Y. L.
Huang
,
D.
Wang
,
X. H.
Ye
,
X. B.
Li
,
Q.
Bao
,
A. S.
Wee
,
S. A.
Maier
,
Q. D.
Chen
,
M. L.
Zhong
,
C. W.
Qiu
, and
H. B.
Sun
, “
Slow cooling and efficient extraction of C-exciton hot carriers in MoS2 monolayer
,”
Nat. Commun.
8
,
13906
(
2017
).
22.
Y.
Li
,
J.
Shi
,
H.
Chen
,
Y.
Mi
,
W.
Du
,
X.
Sui
,
C.
Jiang
,
W.
Liu
,
H.
Xu
, and
X.
Liu
, “
Slow cooling of high‐energy C excitons is limited by intervalley‐transfer in monolayer MoS2
,”
Laser Photonics Rev.
13
(
4
),
1800270
(
2019
).
23.
X.
Zheng
and
X.
Zhang
, “
Excitons in two-dimensional materials
,” in
Advances in Condensed-Matter and Materials Physics - Rudimentary Research to Topical Technology
(
IntechOpen
,
2020
).
24.
A.
Carvalho
,
R. M.
Ribeiro
, and
A. H.
Castro Neto
, “
Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides
,”
Phys. Rev. B
88
(
11
),
115205
(
2013
).
25.
D. Y.
Qiu
,
F. H.
Da Jornada
, and
S. G.
Louie
, “
Optical spectrum of MoS2: Many-body effects and diversity of exciton states
,”
Phys. Rev. Lett.
111
(
21
),
216805
(
2013
).
26.
Z.
Lin
,
B. R.
Carvalho
,
E.
Kahn
,
R.
Lv
,
R.
Rao
,
H.
Terrones
,
M. A.
Pimenta
, and
M.
Terrones
, “
Defect engineering of two-dimensional transition metal dichalcogenides
,”
2D Mater.
3
(
2
),
022002
(
2016
).
27.
R.
Austin
,
Y. R.
Farah
,
T.
Sayer
,
B. M.
Luther
,
A.
Montoya-Castillo
,
A. T.
Krummel
, and
J. B.
Sambur
, “
Hot carrier extraction from 2D semiconductor photoelectrodes
,”
Proc. Natl. Acad. Sci. U. S. A.
120
(
15
),
e2220333120
(
2023
).
28.
S. H.
Aleithan
,
M. Y.
Livshits
,
S.
Khadka
,
J. J.
Rack
,
M. E.
Kordesch
, and
E.
Stinaff
, “
Broadband femtosecond transient absorption spectroscopy for a CVD MoS2 monolayer
,”
Phys. Rev. B
94
(
3
),
035445
(
2016
).
29.
F.
Morabito
,
K.
Synnatschke
,
J. D.
Mehew
,
S.
Varghese
,
C. J.
Sayers
,
G.
Folpini
,
A.
Petrozza
,
G.
Cerullo
,
K.-J.
Tielrooij
,
J.
Coleman
,
V.
Nicolosi
, and
C.
Gadermaier
, “
Long lived photogenerated charge carriers in few-layer transition metal dichalcogenides obtained from liquid phase exfoliation
,”
Nanoscale Adv.
6
,
1074
(
2024
).
30.
C.
Ruppert
,
A.
Chernikov
,
H. M.
Hill
,
A. F.
Rigosi
, and
T. F.
Heinz
, “
The role of electronic and phononic excitation in the optical response of monolayer WS2 after ultrafast excitation
,”
Nano Lett.
17
(
2
),
644
651
(
2017
).
31.
S. K.
Bera
,
M.
Shrivastava
,
K.
Bramhachari
,
H.
Zhang
,
A. K.
Poonia
,
D.
Mandal
,
E. M.
Miller
,
M. C.
Beard
,
A.
Agarwal
, and
K. V.
Adarsh
, “
Atomlike interaction and optically tunable giant band-gap renormalization in large-area atomically thin MoS2
,”
Phys. Rev. B
104
(
20
),
L201404
(
2021
).
32.
D. K.
Efimkin
,
E. K.
Laird
,
J.
Levinsen
,
M. M.
Parish
, and
A. H.
Macdonald
, “
Electron-exciton interactions in the exciton-polaron problem
,”
Phys. Rev. B
103
(
7
),
075417
(
2021
).
33.
Y. C.
Chang
,
S. Y.
Shiau
, and
M.
Combescot
, “
Crossover from trion-hole complex to exciton-polaron in n-doped two-dimensional semiconductor quantum wells
,”
Phys. Rev. B
98
(
23
),
235203
(
2018
).
34.
D. K.
Efimkin
and
A. H.
MacDonald
, “
Many-body theory of trion absorption features in two-dimensional semiconductors
,”
Phys. Rev. B
95
(
3
),
035417
(
2017
).
35.
F.
Rana
,
O.
Koksal
,
M.
Jung
,
G.
Shvets
, and
C.
Manolatou
, “
Many-body theory of radiative lifetimes of exciton-trion superposition states in doped two-dimensional materials
,”
Phys. Rev. B
103
(
3
),
035424
(
2021
).
36.
A. N.
Enyashin
and
G.
Seifert
, “
Electronic properties of MoS2 monolayer and related structures
,”
Nanosyst.: Phys., Chem., Math.
5
,
517
(
2014
).
37.
G.
Antonius
and
S. G.
Louie
, “
Theory of exciton-phonon coupling
,”
Phys. Rev. B
105
,
085111
(
2022
).
38.
Y.
Zhang
,
X.
Shi
,
W.
You
,
Z.
Tao
,
Y.
Zhong
,
F.
Cheenicode Kabeer
,
P.
Maldonado
,
P. M.
Oppeneer
,
M.
Bauer
,
K.
Rossnagel
,
H.
Kapteyn
, and
M.
Murnane
, “
Coherent modulation of the electron temperature and electron-phonon couplings in a 2D material
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
8788
(
2020
).
39.
F.
Katsch
and
A.
Knorr
, “
Doping-induced non-Markovian interference causes excitonic linewidth broadening in monolayer WSe2
,”
Phys. Rev. B
105
(
4
),
L041401
(
2022
).
40.
F.
Cadiz
,
E.
Courtade
,
C.
Robert
,
G.
Wang
,
Y.
Shen
,
H.
Cai
,
T.
Taniguchi
,
K.
Watanabe
,
H.
Carrere
,
D.
Lagarde
,
M.
Manca
,
T.
Amand
,
P.
Renucci
,
S.
Tongay
,
X.
Marie
, and
B.
Urbaszek
, “
Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures
,”
Phys. Rev. X
7
(
2
),
021026
(
2017
).
41.
G.
Gupta
and
K.
Majumdar
, “
Fundamental exciton linewidth broadening in monolayer transition metal dichalcogenides
,”
Phys. Rev. B
99
(
8
),
085412
(
2019
).
42.
A.
Raja
,
L.
Waldecker
,
J.
Zipfel
,
Y.
Cho
,
S.
Brem
,
J. D.
Ziegler
,
M.
Kulig
,
T.
Taniguchi
,
K.
Watanabe
,
E.
Malic
,
T. F.
Heinz
,
T. C.
Berkelbach
, and
A.
Chernikov
, “
Dielectric disorder in two-dimensional materials
,”
Nat. Nanotechnol.
14
(
9
),
832
837
(
2019
).
43.
M.
Selig
,
G.
Berghäuser
,
A.
Raja
,
P.
Nagler
,
C.
Schüller
,
T. F.
Heinz
,
T.
Korn
,
A.
Chernikov
,
E.
Malic
, and
A.
Knorr
, “
Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides
,”
Nat. Commun.
7
,
13279
(
2016
).
44.
G.
Moody
,
C.
Kavir Dass
,
K.
Hao
,
C. H.
Chen
,
L. J.
Li
,
A.
Singh
,
K.
Tran
,
G.
Clark
,
X.
Xu
,
G.
Berghäuser
,
E.
Malic
,
A.
Knorr
, and
X.
Li
, “
Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides
,”
Nat. Commun.
6
,
8315
(
2015
).
45.
K. F.
Mak
,
K.
He
,
C.
Lee
,
G. H.
Lee
,
J.
Hone
,
T. F.
Heinz
, and
J.
Shan
, “
Tightly bound trions in monolayer MoS2
,”
Nat. Mater.
12
(
3
),
207
211
(
2013
).
46.
T.
Goldstein
,
Y. C.
Wu
,
S. Y.
Chen
,
T.
Taniguchi
,
K.
Watanabe
,
K.
Varga
, and
J.
Yan
, “
Ground and excited state exciton polarons in monolayer MoSe2
,”
J. Chem. Phys.
153
(
7
),
071101
(
2020
).
47.
E.
Courtade
,
M.
Semina
,
M.
Manca
,
M. M.
Glazov
,
C.
Robert
,
F.
Cadiz
,
G.
Wang
,
T.
Taniguchi
,
K.
Watanabe
,
M.
Pierre
,
W.
Escoffier
,
E. L.
Ivchenko
,
P.
Renucci
,
X.
Marie
,
T.
Amand
, and
B.
Urbaszek
, “
Charged excitons in monolayer WSe2: Experiment and theory
,”
Phys. Rev. B
96
(
8
),
085302
(
2017
).
48.
A.
Arora
,
T.
Deilmann
,
T.
Reichenauer
,
J.
Kern
,
S.
Michaelis De Vasconcellos
,
M.
Rohlfing
, and
R.
Bratschitsch
, “
Excited-state trions in monolayer WS2
,”
Phys. Rev. Lett.
123
(
16
),
167401
(
2019
).
49.
K.
Wagner
,
E.
Wietek
,
J. D.
Ziegler
,
M. A.
Semina
,
T.
Taniguchi
,
K.
Watanabe
,
J.
Zipfel
,
M. M.
Glazov
, and
A.
Chernikov
, “
Autoionization and dressing of excited excitons by free carriers in monolayer WSe2
,”
Phys. Rev. Lett.
125
(
26
),
267401
(
2020
).
50.
J.
Zipfel
,
K.
Wagner
,
M. A.
Semina
,
J. D.
Ziegler
,
T.
Taniguchi
,
K.
Watanabe
,
M. M.
Glazov
, and
A.
Chernikov
, “
Electron recoil effect in electrically tunable MoSe2 monolayers
,”
Phys. Rev. B
105
,
075311
(
2022
).
51.
J. S.
Ross
,
S.
Wu
,
H.
Yu
,
N. J.
Ghimire
,
A. M.
Jones
,
G.
Aivazian
,
J.
Yan
,
D. G.
Mandrus
,
D.
Xiao
,
W.
Yao
, and
X.
Xu
, “
Electrical control of neutral and charged excitons in a monolayer semiconductor
,”
Nat. Commun.
4
,
1474
(
2013
).
52.
S.
Mouri
,
Y.
Miyauchi
, and
K.
Matsuda
, “
Tunable photoluminescence of monolayer MoS2 via chemical doping
,”
Nano Lett.
13
(
12
),
5944
5948
(
2013
).
53.
Y.
Lin
,
X.
Ling
,
L.
Yu
,
S.
Huang
,
A. L.
Hsu
,
Y. H.
Lee
,
J.
Kong
,
M. S.
Dresselhaus
, and
T.
Palacios
, “
Dielectric screening of excitons and trions in single-layer MoS2
,”
Nano Lett.
14
(
10
),
5569
5576
(
2014
).
54.
C. H.
Lui
,
A. J.
Frenzel
,
D. V.
Pilon
,
Y. H.
Lee
,
X.
Ling
,
G. M.
Akselrod
,
J.
Kong
, and
N.
Gedik
, “
Trion-induced negative photoconductivity in monolayer MoS2
,”
Phys. Rev. Lett.
113
(
16
),
166801
(
2014
).
55.
M. V.
Durnev
and
M. M.
Glazov
, “
Excitons and trions in two-dimensional semiconductors based on transition metal dichalcogenides
,”
Usp. Fiz. Nauk
188
(
09
),
913
934
(
2018
).
56.
W.
Zheng
,
Y.
Jiang
,
X.
Hu
,
H.
Li
,
Z.
Zeng
,
X.
Wang
, and
A.
Pan
, “
Light emission properties of 2D transition metal dichalcogenides: Fundamentals and applications
,”
Adv. Opt. Mater.
6
(
21
),
1800420
(
2018
).
57.
J.
Pei
,
J.
Yang
,
T.
Yildirim
,
H.
Zhang
, and
Y.
Lu
, “
Many-body complexes in 2D semiconductors
,”
Adv. Mater.
31
(
2
),
1706945
(
2019
).
58.
W.
Chen
,
C.
Zheng
,
J.
Pei
, and
H.
Zhan
, “
External field regulation strategies for exciton dynamics in 2D TMDs
,”
Opt. Mater. Express
13
(
4
),
1007
(
2023
).
59.
E. A. A.
Pogna
,
M.
Marsili
,
D.
De Fazio
,
S.
Dal Conte
,
C.
Manzoni
,
D.
Sangalli
,
D.
Yoon
,
A.
Lombardo
,
A. C.
Ferrari
,
A.
Marini
,
G.
Cerullo
, and
D.
Prezzi
, “
Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS2
,”
ACS Nano
10
(
1
),
1182
1188
(
2016
).
60.
H.
Haug
,
S.
Schmitt-Rink
, and
S.
Schmitt-rink
, “
Electron theory of the optical properties of laser-excited semiconductors
,”
Prog. Quantum Electron.
9
(
1
),
3
100
(
1984
).
61.
T.
Borzda
,
C.
Gadermaier
,
N.
Vujicic
,
P.
Topolovsek
,
M.
Borovsak
,
T.
Mertelj
,
D.
Viola
,
C.
Manzoni
,
E. A. A.
Pogna
,
D.
Brida
,
M. R.
Antognazza
,
F.
Scotognella
,
G.
Lanzani
,
G.
Cerullo
, and
D.
Mihailovic
, “
Charge photogeneration in few-layer MoS2
,”
Adv. Funct. Mater.
25
(
22
),
3351
3358
(
2015
).
62.
F.
Gao
,
Y.
Gong
,
M.
Titze
,
R.
Almeida
,
P. M.
Ajayan
, and
H.
Li
, “
Valley trion dynamics in monolayer MoSe2
,”
Phys. Rev. B
94
(
24
),
245413
(
2016
).
63.
L.
Wibmer
,
S.
Lages
,
T.
Unruh
, and
D. M.
Guldi
, “
Excitons and trions in one-photon- and two-photon-excited MoS2: A study in dispersions
,”
Adv. Mater.
30
(
12
),
1706702
(
2018
).
64.
J. J.
Snellenburg
,
S. P.
Laptenok
,
R.
Seger
,
K. M.
Mullen
, and
I. H. M.
Van Stokkum
, “
Glotaran: A java-based graphical user interface for the R package TIMP
,”
J. Stat. Softw.
49
,
1
(
2012
).
65.
R.
Almaraz
,
T.
Sayer
,
J.
Toole
,
R.
Austin
,
Y.
Farah
,
N.
Trainor
,
J. M.
Redwing
,
A.
Krummel
,
A.
Montoya-Castillo
, and
J.
Sambur
, “
Quantifying interfacial energetics of 2D semiconductor electrodes using in situ spectroelectrochemistry and many-body theory
,”
Energy Environ. Sci.
16
(
10
),
4522
4529
(
2023
).
66.
M.
Velický
, “
Electrolyte versus dielectric gating of two-dimensional materials
,”
J. Phys. Chem. C
125
(
40
),
21803
21809
(
2021
).
67.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
, “
Single-layer MoS2 transistors
,”
Nat. Nanotechnol.
6
(
3
),
147
150
(
2011
).
68.
Z.
Yin
,
H.
Li
,
H.
Li
,
L.
Jiang
,
Y.
Shi
,
Y.
Sun
,
G.
Lu
,
Q.
Zhang
,
X.
Chen
, and
H.
Zhang
, “
Single-layer MoS2 phototransistors
,”
ACS Nano
6
(
1
),
74
80
(
2012
).
69.
H.
Schmidt
,
S.
Wang
,
L.
Chu
,
M.
Toh
,
R.
Kumar
,
W.
Zhao
,
A. H.
Castro Neto
,
J.
Martin
,
S.
Adam
,
B.
Özyilmaz
, and
G.
Eda
, “
Transport properties of monolayer MoS2 grown by chemical vapor deposition
,”
Nano Lett.
14
(
4
),
1909
1913
(
2014
).
70.
G. M.
Carroll
,
H.
Zhang
,
J. R.
Dunklin
,
E. M.
Miller
,
N. R.
Neale
, and
J.
Van De Lagemaat
, “
Unique interfacial thermodynamics of few-layer 2D MoS2 for (photo)electrochemical catalysis
,”
Energy Environ. Sci.
12
(
5
),
1648
1656
(
2019
).
71.
K. M.
Wurst
,
O.
Strolka
,
J.
Hiller
,
J.
Keck
,
A. J.
Meixner
,
J.
Lauth
, and
M.
Scheele
, “
Electronic structure of colloidal 2H-MoS2 mono and bilayers determined by spectroelectrochemistry
,”
Small
19
(
23
),
2207101
(
2023
).
72.
T.
Sayer
,
Y. R.
Farah
,
R.
Austin
,
J.
Sambur
,
A. T.
Krummel
, and
A.
Montoya-Castillo
, “
Trion Formation resolves observed peak shifts in the optical spectra of transition-metal dichalcogenides
,”
Nano Lett.
23
(
13
),
6035
6041
(
2023
).
73.
G. D.
Mahan
,
Many-particle Physics
, 3rd ed. (
Kluwer Academic/Plenum Publishers
,
New York
,
2000
).
74.
Y. W.
Chang
and
D. R.
Reichman
, “
Many-body theory of optical absorption in doped two-dimensional semiconductors
,”
Phys. Rev. B
99
(
12
),
125421
(
2019
).
75.
A.
Torche
and
G.
Bester
, “
First-principles many-body theory for charged and neutral excitations: Trion fine structure splitting in transition metal dichalcogenides
,”
Phys. Rev. B
100
(
20
),
201403
(
2019
).
76.
Y. V.
Zhumagulov
,
A.
Vagov
,
D. R.
Gulevich
,
P. E.
Faria Junior
, and
V.
Perebeinos
, “
Trion induced photoluminescence of a doped MoS2 monolayer
,”
J. Chem. Phys.
153
(
4
),
044132
(
2020
).
77.
A. J.
Nozik
, “
Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots
,”
Annu. Rev. Phys. Chem.
52
,
193
231
(
2001
).
78.
R. A.
Suris
,
V. P.
Kochereshko
,
G. V.
Astakhov
,
D. R.
Yakovlev
,
W.
Ossau
,
J.
Nürnberger
,
W.
Faschinger
,
G.
Landwehr
,
T.
Wojtowicz
,
G.
Karczewski
, and
J.
Kossut
, “
Excitons and trions modified by interaction with a two-dimensional electron gas
,”
Phys. Status Solidi B
227
(
2
),
343
352
(
2001
).
79.
R. A.
Suris
, “
Correlation between trion and hole in Fermi distribution in process of trion photo-excitation in doped QWs
,” in
Optical Properties of 2D Systems with Interacting Electrons
(
Springer Netherlands
,
2003
), pp.
111
124
.
80.
K.
Kang
,
S.
Xie
,
L.
Huang
,
Y.
Han
,
P. Y.
Huang
,
K. F.
Mak
,
C. J.
Kim
,
D.
Muller
, and
J.
Park
, “
High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity
,”
Nature
520
(
7549
),
656
660
(
2015
).
81.
A.
Sebastian
,
R.
Pendurthi
,
T. H.
Choudhury
,
J. M.
Redwing
, and
S.
Das
, “
Benchmarking monolayer MoS2 and WS2 field-effect transistors
,”
Nat. Commun.
12
(
1
),
693
(
2021
).
82.
A.
Singh
,
G.
Moody
,
K.
Tran
,
M. E.
Scott
,
V.
Overbeck
,
G.
Berghäuser
,
J.
Schaibley
,
E. J.
Seifert
,
D.
Pleskot
,
N. M.
Gabor
,
J.
Yan
,
D. G.
Mandrus
,
M.
Richter
,
E.
Malic
,
X.
Xu
, and
X.
Li
, “
Trion formation dynamics in monolayer transition metal dichalcogenides
,”
Phys. Rev. B
93
(
4
),
041401
(
2016
).
83.
Y. Y.
Yue
,
L. Y.
Zhao
,
D. A.
Han
,
L.
Wang
,
H. Y.
Wang
,
B. R.
Gao
, and
H. B.
Sun
, “
Trion dynamics and charge photogeneration in MoS2 nanosheets prepared by liquid phase exfoliation
,”
Phys. Chem. Chem. Phys.
23
(
39
),
22430
22436
(
2021
).
84.
Y.
Wan
,
Z.
Guo
,
T.
Zhu
,
S.
Yan
,
J.
Johnson
, and
L.
Huang
, “
Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy
,”
Nat. Chem.
7
(
10
),
785
792
(
2015
).
85.
E. M.
Grumstrup
,
M. M.
Gabriel
,
E. E. M.
Cating
,
E. M.
Van Goethem
, and
J. M.
Papanikolas
, “
Pump-probe microscopy: Visualization and spectroscopy of ultrafast dynamics at the nanoscale
,”
Chem. Phys.
458
,
30
40
(
2015
).
You do not currently have access to this content.