Inspired by bacterial chromosome organization, we study the compaction and clustering of a heterogeneous ring polymer in a crowded medium using molecular dynamics simulations. The polymer consists of several large monomers interspersed along the backbone and small intervening monomers. In a crowded medium, the entropy of crowding particles or crowders favors the collapse of chain molecules, such as chromosomes. Our study shows that the compaction transition of heterogeneous polymers by crowders is well-correlated with the clustering of large monomers: when the large monomers are sufficiently large, both occur concomitantly in the same narrow (biologically relevant) range of the volume fraction of crowders. It also indicates that cylindrical confinement makes crowding effects more effective. The results presented here suggest that phase separation and clustering are essential features of bacterial chromosome organization.

1.
B.
Bonev
and
G.
Cavalli
, “
Organization and function of the 3D genome
,”
Nat. Rev. Genet.
17
,
661
678
(
2016
).
2.
A.
Badrinarayanan
,
T. B. K.
Le
, and
M. T.
Laub
, “
Bacterial chromosome organization and segregation
,”
Annu. Rev. Cell Dev. Biol.
31
,
171
199
(
2015
).
3.
C.
Robinow
and
E.
Kellenberger
, “
The bacterial nucleoid revisited
,”
Microbiol. Rev.
58
,
211
232
(
1994
).
4.
R. J.
Ellis
, “
Macromolecular crowding: Obvious but underappreciated
,”
Trends Biochem. Sci.
26
,
597
604
(
2001
).
5.
S.
Jun
, “
Chromosome, cell cycle, and entropy
,”
Biophys. J.
108
,
785
786
(
2015
).
6.
D.
Marenduzzo
,
K.
Finan
, and
P. R.
Cook
, “
The depletion attraction: An underappreciated force driving cellular organization
,”
J. Cell Biol.
175
,
681
686
(
2006
).
7.
D.
Marenduzzo
,
C.
Micheletti
, and
P. R.
Cook
, “
Entropy-driven genome organization
,”
Biophys. J.
90
,
3712
3721
(
2006
).
8.
D. J.
Jin
,
C.
Cagliero
, and
Y. N.
Zhou
, “
Role of RNA polymerase and transcription in the organization of the bacterial nucleoid
,”
Chem. Rev.
113
,
8662
8682
(
2013
).
9.
D. J.
Jin
and
J. E.
Cabrera
, “
Coupling the distribution of RNA polymerase to global gene regulation and the dynamic structure of the bacterial nucleoid in Escherichia coli
,”
J. Struct. Biol.
156
,
284
291
(
2006
).
10.
H.-X.
Zhou
, “
Influence of crowded cellular environments on protein folding, binding, and oligomerization: Biological consequences and potentials of atomistic modeling
,”
FEBS Lett.
587
,
1053
1061
(
2013
).
11.
J.
Pelletier
,
K.
Halvorsen
,
B.-Y.
Ha
,
R.
Paparcone
,
S. J.
Sandler
,
C. L.
Woldringh
,
W. P.
Wong
, and
S.
Jun
, “
Physical manipulation of the Escherichia coli chromosome reveals its soft nature
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
E2649
E2656
(
2012
).
12.
J.
Kim
,
C.
Jeon
,
H.
Jeong
,
Y.
Jung
, and
B.-Y.
Ha
, “
A polymer in a crowded and confined space: Effects of crowder size and poly-dispersity
,”
Soft Matter
11
,
1877
1888
(
2015
).
13.
T. N.
Shendruk
,
M.
Bertrand
,
H. W.
de Haan
,
J. L.
Harden
, and
G. W.
Slater
, “
Simulating the entropic collapse of coarse-grained chromosomes
,”
Biophys. J.
108
,
810
820
(
2015
).
14.
S.
Cunha
,
C. L.
Woldringh
, and
T.
Odijk
, “
Polymer-mediated compaction and internal dynamics of isolated Escherichia coli nucleoids
,”
J. Struct. Biol.
136
,
53
66
(
2001
).
15.
Y.
Jung
and
B.-Y.
Ha
, “
Collapse transition of a heterogeneous polymer in a crowded medium
,”
J. Chem. Phys.
155
,
054902
(
2021
).
16.
Y.
Jung
,
A.
Sadeghi
, and
B.-Y.
Ha
, “
Modeling the compaction of bacterial chromosomes by biomolecular crowding and the cross-linking protein H-NS
,”
Sci. Rep.
14
,
139
(
2024
).
17.
A. S.
Wegner
et al, “
Compaction of isolated Escherichia coli nucleoids: Polymer and H-NS protein synergetics
,”
J. Struct. Biol.
194
,
129
137
(
2016
).
18.
A. A.
Hyman
,
C. A.
Weber
, and
F.
Jülicher
, “
Liquid-liquid phase separation in biology
,”
Annu. Rev. Cell Dev. Biol.
30
,
39
58
(
2014
).
19.
S. F.
Banani
,
H. O.
Lee
,
A. A.
Hyman
, and
M. K.
Rosen
, “
Biomolecular condensates: Organizers of cellular biochemistry
,”
Nat. Rev. Mol. Cell Biol.
18
,
285
298
(
2017
).
20.
S.
Alberti
,
A.
Gladfelter
, and
T.
Mittag
, “
Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates
,”
Cell
176
,
419
434
(
2019
).
21.
S.
Asakura
and
F.
Oosawa
, “
On interaction between two bodies immersed in a solution of macromolecules
,”
J. Chem. Phys.
22
,
1255
1256
(
1954
).
22.
H. N. W.
Lekkerkerker
and
R.
Tuinier
,
Colloids and the Depletion Interaction
,
Lecture Notes in Physics
(
Springer
,
2011
), Vol.
833
.
23.
R.
de Vries
, “
DNA condensation in bacteria: Interplay between macromolecular crowding and nucleoid proteins
,”
Biochimie
92
,
1715
1721
(
2010
).
24.
J.
Stavans
and
A.
Oppenheim
, “
DNA-protein interactions and bacterial chromosome architecture
,”
Phys. Biol.
3
,
R1
R10
(
2006
).
25.
S. C.
Verma
,
Z.
Qian
, and
S. L.
Adhya
, “
Architecture of the Escherichia coli nucleoid
,”
PLoS Genet.
15
,
e1008456
(
2019
).
26.
D.
Marenduzzo
,
I.
Faro-Trindade
, and
P. R.
Cook
, “
What are the molecular ties that maintain genomic loops?
,”
Trends Genet.
23
,
126
133
(
2007
).
27.
X.
Weng
,
C. H.
Bohrer
,
K.
Bettridge
,
A. C.
Lagda
,
C.
Cagliero
,
D. J.
Jin
, and
J.
Xiao
, “
Spatial organization of RNA polymerase and its relationship with transcription in Escherichia coli
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
20115
20123
(
2019
).
28.
J.
Fan
,
H. E. l.
Sayyed
,
O. J.
Pambos
,
M.
Stracy
,
J.
Kyropoulos
, and
A. N.
Kapanidis
, “
RNA polymerase redistribution supports growth in E. coli strains with a minimal number of rRNA operons
,”
Nucleic Acids Res.
51
,
8085
8101
(
2023
).
29.
C.
Jeon
,
C.
Hyeon
,
Y.
Jung
, and
B.-Y.
Ha
, “
How are molecular crowding and the spatial organization of a biopolymer interrelated
,”
Soft Matter
12
,
9786
9796
(
2016
).
30.
Z.
Liu
,
S. M.
Christensen
,
X.
Capaldi
,
S. I.
Hosseini
,
L.
Zeng
,
Y.
Zhang
,
R.
Reyes-Lamothe
, and
W.
Reisner
, “
Characterizing interaction of multiple nanocavity confined plasmids in presence of large DNA model nucleoid
,”
Soft Matter
19
,
6545
6555
(
2023
).
31.
C.
Jeon
,
Y.
Jung
, and
B.-Y.
Ha
, “
Effects of molecular crowding and confinement on the spatial organization of a biopolymer
,”
Soft Matter
12
,
9436
9450
(
2016
).
32.
C.
Jeon
,
Y.
Jung
, and
B.-Y.
Ha
, “
A ring-polymer model shows how macromolecular crowding controls chromosome-arm organization in Escherichia coli
,”
Sci. Rep.
7
,
11896
(
2017
).
33.
B.
Youngren
,
H. J.
Nielsen
,
S.
Jun
, and
S.
Austin
, “
The multifork Escherichia coli chromosome is a self-duplicating and self-segregating thermodynamic ring polymer
,”
Genes Dev.
28
,
71
84
(
2014
).
34.
T.
Romantsov
,
I.
Fishov
, and
O.
Krichevsky
, “
Internal structure and dynamics of isolated Escherichia coli nucleoids assessed by fluorescence correlation spectroscopy
,”
Biophys. J.
92
,
2875
2884
(
2007
).
35.
W. M.
Gelbart
,
R. F.
Bruinsma
,
P. A.
Pincus
, and
V. A.
Parsegian
, “
DNA-inspired electrostatics
,”
Phys. Today
53
(
9
),
38
44
(
2000
).
36.

Each rRNA operon is associated with as many as 70 RNAPs.7–9,26 Each RNAP is about 10 nm in size.7 If 70 RNAPs were assumed to be close-packed into an imaginary sphere, the sphere would be as large as 40 nm.15,29 Since ac ≈ 5 nm,7 the maximum value of aM used in this work corresponds to aM = 6ac ≈ 30 nm. This is close to the size of the aforementioned imaginary sphere. However, these numbers should not be taken too literally. Indeed, our hard-sphere model of an operon is coarse-grained. Furthermore, clustering of a heterogeneous polymer depends not only on depletion forces but also the entropic cost for looping the intervening polymer, which is larger for a larger loop. In other worlds, the choice of aM is not completely independent of that of loop size. The simulation results obtained with our parameter choices capture some of the essential features of what was observed with the E. coli chromosome8,9 (see Sec. III).

37.
Modeling the 3D Conformation of Genomes
, edited by
T.
Guido
and
L.
Giorgetti
(
CRC Press
,
2019
).
38.
G.
Shi
,
L.
Liu
,
C.
Hyeon
, and
D.
Thirumalai
, “
Interphase human chromosome exhibits out of equilibrium glassy dynamics
,”
Nat. Commun.
9
,
3161
(
2018
).
39.
K.
Kremer
and
G. S.
Grest
, “
Dynamics of entangled linear polymer melts: A molecular-dynamics simulation
,”
J. Chem. Phys.
92
,
5057
5086
(
1990
).
40.
G. S.
Grest
and
K.
Kremer
, “
Molecular dynamics simulation for polymers in the presence of a heat bath
,”
Phys. Rev. A
33
,
3628
3631
(
1986
).
41.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
(
Academic Press
,
2002
).
42.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
5247
(
1971
).
43.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
44.
R. I.
Dima
and
D.
Thirumalai
, “
Asymmetry in the shapes of folded and denatured states of proteins
,”
J. Phys. Chem. B
108
,
6564
6570
(
2004
).
45.
N.
Michaud-Agrawal
et al, “
MDAnalysis: A toolkit for the analysis of molecular dynamics simulations
,”
J. Comput. Chem.
32
,
2319
2327
(
2011
).
46.
R. J.
Gowers
et al, “
MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations
,” in
Proceedings of the 15th Python in Science Conference
, edited by
S.
Benthall
and
S.
Rostrup
(
SciPy
,
2016
), pp.
98
105
.
47.
O.
Tange
,
GNU Parallel 2018
(
Ole Tange
,
2018
).
48.
U.
Endesfelder
,
K.
Finan
,
S. J.
Holden
,
P. R.
Cook
,
A. N.
Kapanidis
, and
M.
Heilemann
, “
Multiscale spatial organization of RNA polymerase in Escherichia coli
,”
Biophys. J.
105
,
172
181
(
2013
).
49.
C. L.
Woldringh
, “
The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation
,”
Mol. Microbiol.
45
,
17
29
(
2002
).
50.
S.
Bakshi
,
H.
Choi
, and
J. C.
Weisshaar
, “
The spatial biology of transcription and translation in rapidly growing Escherichia coli
,”
Front. Microbiol.
6
,
636
(
2015
).
You do not currently have access to this content.