The conductivity of strong electrolytes increases under high electric fields, a nonlinear response known as the first Wien effect. Here, using molecular dynamics simulations, we show that this increase is almost suppressed in moderately concentrated aqueous electrolytes due to the alignment of the water molecules by the electric field. As a consequence of this alignment, the permittivity of water decreases and becomes anisotropic, an effect that can be measured in simulations and reproduced by a model of water molecules as dipoles. We incorporate the resulting anisotropic interactions between the ions into a stochastic density field theory and calculate ionic correlations as well as corrections to the Nernst–Einstein conductivity, which are in qualitative agreement with the numerical simulations.

1.
H. C.
Eckstrom
and
C.
Schmelzer
, “
The wien effect: Deviations of electrolytic solutions from ohm’s law under high field strengths
,”
Chem. Rev.
24
,
367
414
(
1939
).
2.
W. S.
Wilson
, “
The theory of the Wien effect for a binary electrolyte
,” Ph.D. thesis (
Yale University
,
1936
).
3.
P.
Debye
and
E.
Hückel
, “
Theory of electrolytes—Part II: Law of the limit of electrolytic conduction
,”
Phys. Z.
24
,
305
325
(
1923
).
4.
L.
Onsager
, “
Report on a revision of the conductivity theory
,”
Trans. Faraday Soc.
23
,
341
349
(
1927
).
5.
L.
Onsager
and
S. K.
Kim
, “
Wien effect in simple strong electrolytes
,”
J. Phys. Chem.
61
,
198
215
(
1957
).
6.
L.
Onsager
, “
Deviations from Ohm’s law in weak electrolytes
,”
J. Chem. Phys.
2
,
599
615
(
1934
).
7.
J.
Feng
,
K.
Liu
,
M.
Graf
,
D.
Dumcenco
,
A.
Kis
,
M.
Di Ventra
, and
A.
Radenovic
, “
Observation of ionic Coulomb blockade in nanopores
,”
Nat. Mater.
15
,
850
855
(
2016
).
8.
J.
Cai
,
E.
Griffin
,
V. H.
Guarochico-Moreira
,
D.
Barry
,
B.
Xin
,
M.
Yagmurcukardes
,
S.
Zhang
,
A. K.
Geim
,
F. M.
Peeters
, and
M.
Lozada-Hidalgo
, “
Wien effect in interfacial water dissociation through proton-permeable graphene electrodes
,”
Nat. Commun.
13
,
5776
(
2022
).
9.
A.
Montenegro
,
C.
Dutta
,
M.
Mammetkuliev
,
H.
Shi
,
B.
Hou
,
D.
Bhattacharyya
,
B.
Zhao
,
S. B.
Cronin
, and
A. V.
Benderskii
, “
Asymmetric response of interfacial water to applied electric fields
,”
Nature
594
,
62
65
(
2021
).
10.
P.
Robin
,
T.
Emmerich
,
A.
Ismail
,
A.
Niguès
,
Y.
You
,
G.-H.
Nam
,
A.
Keerthi
,
A.
Siria
,
A. K.
Geim
,
B.
Radha
, and
L.
Bocquet
, “
Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels
,”
Science
379
,
161
167
(
2023
).
11.
P.
Robin
,
N.
Kavokine
, and
L.
Bocquet
, “
Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits
,”
Science
373
,
687
691
(
2021
).
12.
D.
Lesnicki
,
C. Y.
Gao
,
B.
Rotenberg
, and
D. T.
Limmer
, “
Field-dependent ionic conductivities from generalized fluctuation-dissipation relations
,”
Phys. Rev. Lett.
124
,
206001
(
2020
).
13.
D.
Lesnicki
,
C. Y.
Gao
,
D. T.
Limmer
, and
B.
Rotenberg
, “
On the molecular correlations that result in field-dependent conductivities in electrolyte solutions
,”
J. Chem. Phys.
155
,
014507
(
2021
).
14.
D. S.
Dean
, “
Langevin equation for the density of a system of interacting Langevin processes
,”
J. Phys. A: Math. Gen.
29
,
L613
L617
(
1996
).
15.
V.
Démery
and
D. S.
Dean
, “
The conductivity of strong electrolytes from stochastic density functional theory
,”
J. Stat. Mech.: Theory Exp.
2016
,
023106
.
16.
J.-P.
Péraud
,
A. J.
Nonaka
,
J. B.
Bell
,
A.
Donev
, and
A. L.
Garcia
, “
Fluctuation-enhanced electric conductivity in electrolyte solutions
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
10829
10833
(
2017
).
17.
A.
Donev
,
A. L.
Garcia
,
J.-P.
Péraud
,
A. J.
Nonaka
, and
J. B.
Bell
, “
Fluctuating hydrodynamics and Debye-Hückel-Onsager theory for electrolytes
,”
Curr. Opin. Electrochem.
13
,
1
10
(
2019
).
18.
Y.
Avni
,
R. M.
Adar
,
D.
Andelman
, and
H.
Orland
, “
Conductivity of concentrated electrolytes
,”
Phys. Rev. Lett.
128
,
098002
(
2022
).
19.
Y.
Avni
,
D.
Andelman
, and
H.
Orland
, “
Conductance of concentrated electrolytes: Multivalency and the Wien effect
,”
J. Chem. Phys.
157
,
154502
(
2022
).
20.
O.
Bernard
,
M.
Jardat
,
B.
Rotenberg
, and
P.
Illien
, “
On analytical theories for conductivity and self-diffusion in concentrated electrolytes
,”
J. Chem. Phys.
159
,
164105
(
2023
).
21.
J.-F.
Dufrêche
,
O.
Bernard
,
S.
Durand-Vidal
, and
P.
Turq
, “
Analytical theories of transport in concentrated electrolyte solutions from the MSA
,”
J. Phys. Chem. B
109
,
9873
9884
(
2005
).
22.
F.
Booth
, “
The dielectric constant of water and the saturation effect
,”
J. Chem. Phys.
19
,
391
394
(
1951
).
23.
A.
Piekara
and
S.
Kielich
, “
Theory of orientational effects and related phenomena in dielectric liquids
,”
J. Chem. Phys.
29
,
1297
1305
(
1958
).
24.
I.-C.
Yeh
and
M. L.
Berkowitz
, “
Dielectric constant of water at high electric fields: Molecular dynamics study
,”
J. Chem. Phys.
110
,
7935
7942
(
1999
).
25.
H. A.
Kotodziej
,
G. P.
Jones
, and
M.
Davies
, “
High field dielectric measurements in water
,”
J. Chem. Soc., Faraday Trans. 2
71
,
269
274
(
1975
).
26.
E. N. D. C.
Andrade
and
C.
Dodd
, “
The effect of an electric field on the viscosity of liquids
,”
Proc. R. Soc. London, Ser. A
187
,
296
337
(
1946
).
27.
J.
Lyklema
and
J.
Overbeek
, “
On the interpretation of electrokinetic potentials
,”
J. Colloid Sci.
16
,
501
512
(
1961
).
28.
D.
Zong
,
H.
Hu
,
Y.
Duan
, and
Y.
Sun
, “
Viscosity of water under electric field: Anisotropy induced by redistribution of hydrogen bonds
,”
J. Phys. Chem. B
120
,
4818
4827
(
2016
).
29.
D.
Jin
,
Y.
Hwang
,
L.
Chai
,
N.
Kampf
, and
J.
Klein
, “
Direct measurement of the viscoelectric effect in water
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2113690119
(
2022
).
30.
A.
Abrashkin
,
D.
Andelman
, and
H.
Orland
, “
Dipolar Poisson-Boltzmann equation: Ions and dipoles close to charge interfaces
,”
Phys. Rev. Lett.
99
,
077801
(
2007
).
31.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
32.
P. E.
Smith
and
W. F.
van Gunsteren
, “
The viscosity of SPC and SPC/E water at 277 and 300 K
,”
Chem. Phys. Lett.
215
,
315
318
(
1993
).
33.
P.
Loche
,
P.
Steinbrunner
,
S.
Friedowitz
,
R. R.
Netz
, and
D. J.
Bonthuis
, “
Transferable ion force fields in water from a simultaneous optimization of ion solvation and ion-ion interaction
,”
J. Phys. Chem. B
125
,
8581
8587
(
2021
).
34.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
, “
Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
35.

See this GitHub repository for the simulation files and the Python codes used to interpret the simulations results.

36.
R. L.
Fulton
, “
The nonlinear dielectric behavior of water: Comparisons of various approaches to the nonlinear dielectric increment
,”
J. Chem. Phys.
130
,
204503
(
2009
).
37.
H.
Berthoumieux
,
G.
Monet
, and
R.
Blossey
, “
Dipolar Poisson models in a dual view
,”
J. Chem. Phys.
155
,
024112
(
2021
).
38.
L. D.
Landau
,
J. S.
Bell
,
M.
Kearsley
,
L.
Pitaevskii
,
E.
Lifshitz
, and
J.
Sykes
,
Electrodynamics of Continuous Media
(
Elsevier
,
2013
), Vol.
8
.
39.
J. B.
Hasted
,
D. M.
Ritson
, and
C. H.
Collie
, “
Dielectric properties of aqueous ionic solutions. Parts I and II
,”
J. Chem. Phys.
16
,
1
21
(
1948
).
40.
A.
Levy
,
D.
Andelman
, and
H.
Orland
, “
Dielectric constant of ionic solutions: A field-theory approach
,”
Phys. Rev. Lett.
108
,
227801
(
2012
).
41.
S.
Seal
,
K.
Doblhoff-Dier
, and
J.
Meyer
, “
Dielectric decrement for aqueous NaCl solutions: Effect of ionic charge scaling in nonpolarizable water force fields
,”
J. Phys. Chem. B
123
,
9912
9921
(
2019
).
42.
H.
Bonneau
,
V.
Démery
, and
E.
Raphaël
, “
Temporal response of the conductivity of electrolytes
,”
J. Stat. Mech.: Theory Exp.
2023
,
073205
.
43.
P. A.
Bopp
,
A. A.
Kornyshev
, and
G.
Sutmann
, “
Static nonlocal dielectric function of liquid water
,”
Phys. Rev. Lett.
76
,
1280
1283
(
1996
).
44.
H.
Berthoumieux
, “
Gaussian field model for polar fluids as a function of density and polarization: Toward a model for water
,”
J. Chem. Phys.
148
,
104504
(
2018
).
45.
P. A.
Bopp
,
A. A.
Kornyshev
, and
G.
Sutmann
, “
Frequency and wave-vector dependent dielectric function of water: Collective modes and relaxation spectra
,”
J. Chem. Phys.
109
,
1939
1958
(
1998
).
46.
P.
Illien
,
A.
Carof
, and
B.
Rotenberg
, “
Stochastic density functional theory for ions in a polar solvent
,” arXiv:2407.17232 [cond-mat.soft] (
2024
).
47.
H.
Jalali
,
E.
Lotfi
,
R.
Boya
, and
M.
Neek-Amal
, “
Abnormal dielectric constant of nanoconfined water between graphene layers in the presence of salt
,”
J. Phys. Chem. B
125
,
1604
1610
(
2021
).
48.
P.
Loche
,
C.
Ayaz
,
A.
Schlaich
,
Y.
Uematsu
, and
R. R.
Netz
, “
Giant axial dielectric response in water-filled nanotubes and effective electrostatic ion–ion interactions from a tensorial dielectric model
,”
J. Phys. Chem. B
123
,
10850
10857
(
2019
).
49.
R.
Wang
,
M.
Souilamas
,
A.
Esfandiar
,
R.
Fabregas
,
S.
Benaglia
,
H.
Nevison-Andrews
,
Q.
Yang
,
J.
Normansell
,
P.
Ares
,
G.
Ferrari
,
A.
Principi
,
A. K.
Geim
, and
L.
Fumagalli
, “
In-plane dielectric constant and conductivity of confined water
,” arXiv:2407.21538 [cond-mat.mes-hall] (
2024
).
50.
L.
Fumagalli
,
A.
Esfandiar
,
R.
Fabregas
,
S.
Hu
,
P.
Ares
,
A.
Janardanan
,
Q.
Yang
,
B.
Radha
,
T.
Taniguchi
,
K.
Watanabe
,
G.
Gomila
,
K. S.
Novoselov
, and
A. K.
Geim
, “
Anomalously low dielectric constant of confined water
,”
Science
360
,
1339
1342
(
2018
).
51.
M.
Neumann
, “
Dipole moment fluctuation formulas in computer simulations of polar systems
,”
Mol. Phys.
50
,
841
858
(
1983
).
52.
H.
Flyvbjerg
and
H. G.
Petersen
, “
Error estimates on averages of correlated data
,”
J. Chem. Phys.
91
,
461
466
(
1989
).
You do not currently have access to this content.