In the study of crystal nucleation via computer simulations, hard spheres are arguably the most extensively explored model system. Nonetheless, even in this simple model system, the complex thermodynamics of crystal nuclei can sometimes give rise to counterintuitive results, such as the recent observation that the pressure inside a critical nucleus is lower than that of the surrounding fluid, seemingly clashing with the strictly positive Young–Laplace pressure we would expect in liquid droplets. Here, we re-derive many of the founding equations associated with crystal nucleation and use the hard-sphere model to demonstrate how they give rise to this negative pressure difference. We exploit the fact that, in the canonical ensemble, a nucleus can be in a (meta)stable equilibrium with the fluid and measure the surface stress for both flat and curved interfaces. Additionally, we explain the effect of defects on the chemical potential inside the crystal nucleus. Finally, we present a simple, fitted thermodynamic model to capture the properties of the nucleus, including the work required to form critical nuclei.

1.
W. G.
Hoover
and
F. H.
Ree
,
J. Chem. Phys.
49
,
3609
(
1968
).
2.
D.
Frenkel
and
A. J.
Ladd
,
J. Chem. Phys.
81
,
3188
(
1984
).
3.
P. N.
Pusey
and
W.
Van Megen
,
Nature
320
,
340
(
1986
).
4.
C.
Bennett
and
B.
Alder
,
J. Chem. Phys.
54
,
4796
(
1971
).
5.
R. K.
Bowles
and
R. J.
Speedy
,
Mol. Phys.
83
,
113
(
1994
).
6.
S.
Pronk
and
D.
Frenkel
,
J. Phys. Chem. B
105
,
6722
(
2001
).
7.
B.
van der Meer
,
M.
Dijkstra
, and
L.
Filion
,
J. Chem. Phys.
146
,
244905
(
2017
).
9.
P.
Pusey
,
E.
Zaccarelli
,
C.
Valeriani
,
E.
Sanz
,
W. C.
Poon
, and
M. E.
Cates
,
Philos. Trans. R. Soc., A
367
,
4993
(
2009
).
10.
E.
Zaccarelli
,
C.
Valeriani
,
E.
Sanz
,
W.
Poon
,
M.
Cates
, and
P.
Pusey
,
Phys. Rev. Lett.
103
,
135704
(
2009
).
11.
G.
Parisi
and
F.
Zamponi
,
Rev. Mod. Phys.
82
,
789
(
2010
).
12.
S.
Auer
and
D.
Frenkel
,
Nature
409
,
1020
(
2001
).
13.
U.
Gasser
,
E. R.
Weeks
,
A.
Schofield
,
P.
Pusey
, and
D.
Weitz
,
Science
292
,
258
(
2001
).
14.
L.
Filion
,
M.
Hermes
,
R.
Ni
, and
M.
Dijkstra
,
J. Chem. Phys.
133
,
244115
(
2010
).
15.
D.
Richard
and
T.
Speck
,
J. Chem. Phys.
148
,
124110
(
2018
).
16.
C.
Sinn
,
A.
Heymann
,
A.
Stipp
, and
T.
Palberg
, in
Trends in Colloid and Interface Science XVI
(
Springer
,
2001
), p.
266
.
17.
L.
Filion
,
R.
Ni
,
D.
Frenkel
, and
M.
Dijkstra
,
J. Chem. Phys.
134
,
134901
(
2011
).
18.
M.
Radu
and
T.
Schilling
,
Europhys. Lett.
105
,
26001
(
2014
).
19.
N.
Wood
,
J.
Russo
,
F.
Turci
, and
C. P.
Royall
,
J. Chem. Phys.
149
,
204506
(
2018
).
20.
G.
Fiorucci
,
G. M.
Coli
,
J. T.
Padding
, and
M.
Dijkstra
,
J. Chem. Phys.
152
,
064903
(
2020
).
21.
M.
de Jager
and
L.
Filion
,
J. Chem. Phys.
157
,
154905
(
2022
).
22.
C. P.
Royall
,
P.
Charbonneau
,
M.
Dijkstra
,
J.
Russo
,
F.
Smallenburg
,
T.
Speck
, and
C.
Valeriani
, arXiv:2305.02452 (
2023
).
23.
S.
Auer
and
D.
Frenkel
,
Nature
413
,
711
(
2001
).
24.
J.
Russo
,
A. C.
Maggs
,
D.
Bonn
, and
H.
Tanaka
,
Soft Matter
9
,
7369
(
2013
).
25.
J. R.
Espinosa
,
C.
Vega
,
C.
Valeriani
,
D.
Frenkel
, and
E.
Sanz
,
Soft Matter
15
,
9625
(
2019
).
26.
W.
Wöhler
and
T.
Schilling
,
Phys. Rev. Lett.
128
,
238001
(
2022
).
27.
A.
Statt
,
P.
Virnau
, and
K.
Binder
,
Phys. Rev. Lett.
114
,
026101
(
2015
).
28.
P.
Koß
,
A.
Statt
,
P.
Virnau
, and
K.
Binder
,
Phys. Rev. E
96
,
042609
(
2017
).
29.
D.
Richard
and
T.
Speck
,
J. Chem. Phys.
148
,
224102
(
2018
).
30.
K. G. S. H.
Gunawardana
and
X.
Song
,
J. Chem. Phys.
148
,
204506
(
2018
).
31.
P.
Montero de Hijes
,
J. R.
Espinosa
,
V.
Bianco
,
E.
Sanz
, and
C.
Vega
,
J. Phys. Chem. C
124
,
8795
(
2020
).
32.
P.
Montero de Hijes
,
K.
Shi
,
E. G.
Noya
,
E. E.
Santiso
,
K. E.
Gubbins
,
E.
Sanz
, and
C.
Vega
,
J. Chem. Phys.
153
,
191102
(
2020
).
33.
A.
Cacciuto
,
S.
Auer
, and
D.
Frenkel
,
Phys. Rev. Lett.
93
,
166105
(
2004
).
34.
A.
Cacciuto
and
D.
Frenkel
,
J. Phys. Chem. B
109
,
6587
(
2005
).
35.
W. W.
Mullins
,
J. Chem. Phys.
81
,
1436
(
1984
).
36.
P.
Montero de Hijes
and
C.
Vega
,
J. Chem. Phys.
156
,
014505
(
2022
).
37.
P.
Rosales-Pelaez
,
I.
Sanchez-Burgos
,
C.
Valeriani
,
C.
Vega
, and
E.
Sanz
,
Phys. Rev. E
101
,
022611
(
2020
).
38.
J. W.
Gibbs
,
The Scientific Papers of J. Willard Gibbs. Volume, I. Thermodynamics
(
Longmans, Green, and Co
,
London
,
1906
), Vol.
1
.
39.
R.
Shuttleworth
,
Proc. Phys. Soc., Sect. A
63
,
444
(
1950
).
40.
N.
Di Pasquale
and
R. L.
Davidchack
,
J. Chem. Phys.
153
,
154705
(
2020
).
41.
A. J.-M.
Yang
,
J. Chem. Phys.
82
,
2082
(
1985
).
43.
J. F.
Lutsko
and
J.
Lam
,
Phys. Rev. E
98
,
012604
(
2018
).
44.
B. J.
Alder
and
T. E.
Wainwright
,
J. Chem. Phys.
31
,
459
(
1959
).
46.
J.
Jover
,
A.
Haslam
,
A.
Galindo
,
G.
Jackson
, and
E.
Müller
,
J. Chem. Phys.
137
,
144505
(
2012
).
47.
B. D.
Lubachevsky
and
F. H.
Stillinger
,
J. Stat. Phys.
60
,
561
(
1990
).
48.

Note that, since we consider equilibrium systems, the mechanical and thermodynamical routes for obtaining pressures are equivalent.

49.
B. J.
Alder
and
T. E.
Wainwright
,
J. Chem. Phys.
33
,
1439
(
1960
).
50.
T.
Nakamura
,
W.
Shinoda
, and
T.
Ikeshoji
,
J. Chem. Phys.
135
,
094106
(
2011
).
51.
T.
Nakamura
,
S.
Kawamoto
, and
W.
Shinoda
,
Comput. Phys. Commun.
190
,
120
(
2015
).
52.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
Faraday Discuss.
104
,
93
(
1996
).
53.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
(
1983
).
54.
J. R.
Espinosa
,
E.
Sanz
,
C.
Valeriani
, and
C.
Vega
,
J. Chem. Phys.
139
,
144502
(
2013
).
55.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic Press
,
San Diego
,
2002
).
56.
N. G.
Almarza
and
E.
Lomba
,
J. Chem. Phys.
127
,
084116
(
2007
).
57.
J. M.
Polson
,
E.
Trizac
,
S.
Pronk
, and
D.
Frenkel
,
J. Chem. Phys.
112
,
5339
(
2000
).
58.
F.
Smallenburg
,
G.
Del Monte
,
M.
de Jager
, and
L.
Filion
,
J. Chem. Phys.
160
,
224109
(
2024
).
59.
J.
Kolafa
,
S.
Labík
, and
A.
Malijevskỳ
,
Phys. Chem. Chem. Phys.
6
,
2335
(
2004
).
60.
R. J.
Speedy
,
J. Phys.: Condens. Matter
10
,
4387
(
1998
).
61.
W.
Gispen
and
M.
Dijkstra
,
J. Chem. Phys.
159
,
086101
(
2023
).
62.
A.
Härtel
,
M.
Oettel
,
R. E.
Rozas
,
S. U.
Egelhaaf
,
J.
Horbach
, and
H.
Löwen
,
Phys. Rev. Lett.
108
,
226101
(
2012
).
63.
R. L.
Davidchack
,
J. Chem. Phys.
133
,
234701
(
2010
).
64.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Courier Corporation
,
2013
).
65.
R. L.
Davidchack
and
B. B.
Laird
,
J. Chem. Phys.
108
,
9452
(
1998
).
66.

Note that for simplicity, we only consider hydrostatic deformations of the lattice. This is consistent with the observation that our simulations show no sign of anisotropic compression of the crystal nucleus.

67.
S.
Pronk
and
D.
Frenkel
,
J. Chem. Phys.
120
,
6764
(
2004
).
68.

Note that if interstitials are allowed as well, the true divergence is avoided, as there is a finite (but very high) chemical potential where vacancies and interstitials balance each other, resulting in a net zero flow between crystal and particle reservoir.

69.
R. L.
Davidchack
and
B. B.
Laird
,
Phys. Rev. Lett.
85
,
4751
(
2000
).
70.
A.
Cacciuto
,
S.
Auer
, and
D.
Frenkel
,
J. Chem. Phys.
119
,
7467
(
2003
).
71.
Y.
Mu
,
A.
Houk
, and
X.
Song
,
J. Phys. Chem. B
109
,
6500
(
2005
).
72.
I.
Sanchez-Burgos
,
E.
Sanz
,
C.
Vega
, and
J. R.
Espinosa
,
Phys. Chem. Chem. Phys.
23
,
19611
(
2021
).
73.
D.
Kashchiev
,
J. Chem. Phys.
76
,
5098
(
1982
).
74.
D. W.
Oxtoby
and
D.
Kashchiev
,
J. Chem. Phys.
100
,
7665
(
1994
).
75.
R.
Bowles
,
R.
McGraw
,
P.
Schaaf
,
B.
Senger
,
J.-C.
Voegel
, and
H.
Reiss
,
J. Chem. Phys.
113
,
4524
(
2000
).
76.
D. W.
Oxtoby
and
R.
Evans
,
J. Chem. Phys.
89
,
7521
(
1988
).
77.
U. R.
Pedersen
,
J. Chem. Phys.
139
,
104102
(
2013
).
You do not currently have access to this content.