We introduce a methodological framework coupling machine-learning potentials, ring polymer molecular dynamics (RPMD), and kinetic Monte Carlo (kMC) to draw a comprehensive physical picture of the collective diffusion of hydrogen atoms on metal surfaces. For the benchmark case of hydrogen diffusion on a Ni(100) surface, the hydrogen adsorption and diffusion energetics and its dependence on the local coverage is described via a neural-network potential, where the training data are computed via periodic density functional theory (DFT) and include all relevant optimized diffusion and desorption paths, sampled by nudged elastic band optimizations and molecular dynamics simulations. Nuclear quantum effects, being crucial for processes involving hydrogen at low temperatures, are treated by RPMD. The diffusion rate constants are calculated with a combination of umbrella samplings employed to map the free energy profile and separate samplings of recrossing trajectories to obtain the transmission coefficient. The calculated diffusion rates for different temperatures and local environments are then combined and fitted into a kMC model allowing access to larger time and length scales. Our results demonstrate an outstanding performance for the trained neural network potential in reproducing reference DFT energies and forces. We report the effective diffusion rates for different temperatures and hydrogen surface coverages obtained via this recipe in good agreement with the experimental results. The method combination proposed in this study can be instrumental for a wide range of applications in materials science.

1.
X.
Shen
,
Y.
Li
,
X.
Liu
,
D.
Zhang
,
J.
Gao
, and
T.
Liang
, “
Hydrogen diffusion into the subsurfaces of model metal catalysts from first principles
,”
Phys. Chem. Chem. Phys.
19
,
3557
3564
(
2017
).
2.
X.
Shen
,
D.
Tanguy
, and
D.
Connétable
, “
Atomistic modelling of hydrogen segregation to the Σ9 {2 2 1}[1 1 0] symmetric tilt grain boundary in Al
,”
Philos. Mag.
94
,
2247
2261
(
2014
).
3.
H.
Birnbaum
,
I.
Robertson
,
P.
Sofronis
, and
D.
Teter
, “
Mechanisms of hydrogen related fracture—A review
,” in
Second International Conference on Corrosion-Deformation Interactions, CDI’96
(
Association for Materials Protection and Performance
,
1996
), pp.
172
195
, ISBN: 9781861250483.
4.
J. C.
Tremblay
and
M.
Blanco-Rey
, “
Manipulating interfacial hydrogens at palladium via STM
,”
Phys. Chem. Chem. Phys.
17
,
13973
13983
(
2015
).
5.
S.
Ogura
,
M.
Okada
, and
K.
Fukutani
, “
Near-surface accumulation of hydrogen and CO blocking effects on a Pd–Au alloy
,”
J. Phys. Chem. C
117
,
9366
9371
(
2013
).
6.
B.
Yang
,
R.
Burch
,
C.
Hardacre
,
G.
Headdock
, and
P.
Hu
, “
Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: A density functional theory study
,”
J. Catal.
305
,
264
276
(
2013
).
7.
T. H.
Yu
,
T.
Hofmann
,
Y.
Sha
,
B. V.
Merinov
,
D. J.
Myers
,
C.
Heske
, and
W. A.
Goddard
III
, “
Finding correlations of the oxygen reduction reaction activity of transition metal catalysts with parameters obtained from quantum mechanics
,”
J. Phys. Chem. C
117
,
26598
26607
(
2013
).
8.
K.-J.
Lee
,
Y.
Ye
,
H.
Su
,
B. S.
Mun
, and
E. J.
Crumlin
, “
Correlating the reverse water–gas shift reaction with surface chemistry: The influence of reactant gas exposure to Ni(100)
,”
ACS Catal.
13
,
9041
9050
(
2023
).
9.
C.
Heine
,
B. A.
Lechner
,
H.
Bluhm
, and
M.
Salmeron
, “
Recycling of CO2: Probing the chemical state of the Ni(111) surface during the methanation reaction with ambient-pressure X-ray photoelectron spectroscopy
,”
J. Am. Chem. Soc.
138
,
13246
13252
(
2016
).
10.
J.
Cai
,
Y.
Han
,
S.
Chen
,
E. J.
Crumlin
,
B.
Yang
,
Y.
Li
, and
Z.
Liu
, “
CO2 activation on Ni(111) and Ni(100) surfaces in the presence of H2O: An ambient-pressure X-ray photoelectron spectroscopy study
,”
J. Phys. Chem. C
123
,
12176
12182
(
2019
).
11.
S. C.
Singhal
and
K.
Kendall
,
High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
(
Elsevier
,
2003
).
12.
N. Q.
Minh
and
T.
Takahashi
,
Science and Technology of Ceramic Fuel Cells
(
Elsevier
,
1995
).
13.
C.
Egawa
,
S.
Osawa
, and
S.
Oki
, “
Ethylene hydrogenation on Ni(1 0 0) surface
,”
Surf. Sci.
529
,
349
358
(
2003
).
14.
B.
Bhatia
and
D. S.
Sholl
, “
Chemisorption and diffusion of hydrogen on surface and subsurface sites of flat and stepped nickel surfaces
,”
J. Chem. Phys.
122
,
204707
(
2005
).
15.
X.
Zheng
,
L.
Peng
,
L.
Li
,
N.
Yang
,
Y.
Yang
,
J.
Li
,
J.
Wang
, and
Z.
Wei
, “
Role of non-metallic atoms in enhancing the catalytic activity of nickel-based compounds for hydrogen evolution reaction
,”
Chem. Sci.
9
,
1822
1830
(
2018
).
16.
J. M.
Hernandez
,
D.-H.
Lim
,
H. V. P.
Nguyen
,
S.-P.
Yoon
,
J.
Han
,
S. W.
Nam
,
C. W.
Yoon
,
S.-K.
Kim
, and
H. C.
Ham
, “
Decomposition of hydrogen sulfide (H2S) on Ni(100) and Ni3Al(100) surfaces from first-principles
,”
Int. J. Hydrogen Energy
39
,
12251
12258
(
2014
).
17.
F.
Zaera
, “
Hydrogenation and H-D exchange of chemisorbed ethylene on Ni(100) under vacuum
,”
J. Catal.
121
,
318
326
(
1990
).
18.
H.
Michelsen
,
C.
Rettner
, and
D.
Auerbach
, “
The adsorption of hydrogen at copper surfaces: A model system for the study of activated adsorption
,” in
Surface Reactions
(
Springer
,
1994
), pp.
185
237
.
19.
R.
Kleyna
,
D.
Borgmann
, and
G.
Wedler
, “
Temperature dependent reaction of propene on Ni(100) single crystal surfaces
,”
Surf. Sci.
433–435
,
205
209
(
1999
).
20.
T.-S.
Lin
and
R.
Gomer
, “
Diffusion of 1H and 2H on the Ni(111) and (100) planes
,”
Surf. Sci.
255
,
41
60
(
1991
).
21.
X. D.
Zhu
,
A.
Lee
,
A.
Wong
, and
U.
Linke
, “
Surface diffusion of hydrogen on Ni(100): An experimental observation of quantum tunneling diffusion
,”
Phys. Rev. Lett.
68
,
1862
1865
(
1992
).
22.
D.
Jiang
and
E. A.
Carter
, “
Adsorption and diffusion energetics of hydrogen atoms on Fe(1 1 0) from first principles
,”
Surf. Sci.
547
,
85
98
(
2003
).
23.
P.
Ferrin
,
S.
Kandoi
,
A. U.
Nilekar
, and
M.
Mavrikakis
, “
Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study
,”
Surf. Sci.
606
,
679
689
(
2012
).
24.
M.
Alducin
,
R.
Díez Muiño
,
H.
Busnengo
, and
A.
Salin
, “
Low sticking probability in the nonactivated dissociation of N2 molecules on W(110)
,”
J. Chem. Phys.
125
,
144705
(
2006
).
25.
N.
Ozawa
,
T. A.
Roman
,
H.
Nakanishi
,
H.
Kasai
,
N. B.
Arboleda
, and
W. A.
Diño
, “
Potential energy of hydrogen atom motion on Pd(111) surface and in subsurface: A first principles calculation
,”
J. Appl. Phys.
101
,
123530
(
2007
).
26.
R.
Ishiwatari
and
M.
Tachikawa
, “
Unrestricted density functional study on the adsorption of hydrogen molecule on nickel surface
,”
J. Mol. Struct.
735–736
,
383
387
(
2005
).
27.
M. H.
Weng
,
H.-T.
Chen
,
Y.-C.
Wang
,
S.-P.
Ju
,
J.-G.
Chang
, and
M. C.
Lin
, “
Kinetics and mechanisms for the adsorption, dissociation, and diffusion of hydrogen in Ni and Ni/YSZ slabs: A DFT study
,”
Langmuir
28
,
5596
5605
(
2012
).
28.
B.
Bigot
,
F.
Delbecq
,
A.
Milet
, and
V.-H.
Peuch
, “
Nitriles and hydrogen on a nickel catalyst: Theoretical evidence of a process competing with the total hydrogenation reaction
,”
J. Catal.
159
,
383
393
(
1996
).
29.
S. E.
Wonchoba
,
W.-P.
Hu
, and
D. G.
Truhlar
, “
Surface diffusion of H on Ni(100): Interpretation of the transition temperature
,”
Phys. Rev. B
51
,
9985
10002
(
1995
).
30.
R.
Baer
,
Y.
Zeiri
, and
R.
Kosloff
, “
Hydrogen transport in nickel (111)
,”
Phys. Rev. B
55
,
10952
(
1997
).
31.
X.
Liu
,
Q.
Fu
, and
X.
Shen
, “
Theoretical study of hydrogen desorption on the Ni(100) surface through simulated temperature programmed desorption spectra
,”
Surf. Sci.
744
,
122467
(
2024
).
32.
A.
Chatterjee
and
D. G.
Vlachos
, “
An overview of spatial microscopic and accelerated kinetic Monte Carlo methods
,”
J. Comput.-Aided Mater. Des.
14
,
253
308
(
2007
).
33.
A. P. J.
Jansen
,
An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions
,
Lecture Notes in Physics Band 856
(
Springer
,
2012
).
34.
K.
Haug
and
N.-K. N.
Do
, “
Kinetic Monte Carlo study of the effect of hydrogen on the two-dimensional epitaxial growth of Ni(100)
,”
Phys. Rev. B
60
,
11095
(
1999
).
35.
K.
Haug
and
J.
Jamoury
, “
Kinetic Monte Carlo study of the effects of hydrogen on the 3-d epitaxial growth of Ni(100) and Ni(110)
,”
J. Phys. Chem. B
106
,
11253
11263
(
2002
).
36.
K.
Haug
and
G.
Raibeck
, “
Kinetic Monte Carlo study of competing hydrogen pathways into connected (100), (110), and (111) Ni surfaces
,”
J. Phys. Chem. B
107
,
11433
11440
(
2003
).
37.
H.
Ibach
, “
Quantum motion of hydrogen on Ni(100) surfaces
,”
Phys. Rev. B
102
,
165405
(
2020
).
38.
Y. V.
Suleimanov
,
R.
Collepardo-Guevara
, and
D. E.
Manolopoulos
, “
Bimolecular reaction rates from ring polymer molecular dynamics: Application to H + CH4 → H2 + CH3
,”
J. Chem. Phys.
134
,
044131
(
2011
).
39.
T. N.
Truong
and
D. G.
Truhlar
, “
The effects of steps, coupling to substrate vibrations, and surface coverage on surface diffusion rates and kinetic isotope effects: Hydrogen diffusion on Ni
,”
J. Chem. Phys.
93
,
2125
2138
(
1990
).
40.
W.
Wang
and
Y.
Zhao
, “
Path integral evaluation of H diffusion on Ni(100) surface based on the quantum instanton approximation
,”
J. Chem. Phys.
130
,
114708
(
2009
).
41.
W.
Fang
,
J. O.
Richardson
,
J.
Chen
,
X.-Z.
Li
, and
A.
Michaelides
, “
Simultaneous deep tunneling and classical hopping for hydrogen diffusion on metals
,”
Phys. Rev. Lett.
119
,
126001
(
2017
).
42.
Y.
He
and
W.
Wang
, “
H2 dissociation on H-precovered Ni(100) surface: Physisorbed state and coverage dependence
,”
J. Phys. Chem. C
123
,
5365
5377
(
2019
).
43.
A.
Alibakhshi
,
J.
Steffen
,
C.
Pinilla
, and
B.
Hartke
, “
Comparison of implicit and explicit solvent approaches in ab initio evaluation of thermochemistry in solution: Application in studying boron isotope fractionation in water
,”
J. Phys. Chem. A
127
,
2503
2510
(
2023
).
44.
C. H.
Bennett
, in
Algorithmms for Chemical Computations
, edited by
R. E.
Christofferson
(
ACS Publications
,
1977
), Vol.
46
.
45.
D.
Chandler
, “
Statistical mechanics of isomerization dynamics in liquids and the transition state approximation
,”
J. Chem. Phys.
68
,
2959
2970
(
1978
).
46.
Y. V.
Suleimanov
, “
Surface diffusion of hydrogen on Ni(100) from ring polymer molecular dynamics
,”
J. Phys. Chem. C
116
,
11141
11153
(
2012
).
47.
J.
Steffen
, “
Caracal: A versatile ring polymer molecular dynamics simulation package
,”
J. Chem. Theory Comput.
19
,
5334
5355
(
2023
).
48.
A. P. J.
Jansen
,
An Introduction to Monte Carlo Simulations of Surface Reactions
(
Springer
,
2012
).
49.
T. N.
Truong
and
D. G.
Truhlar
, “
Effect of steps and surface coverage on rates and kinetic isotope effects for reactions catalyzed by metallic surfaces: Chemisorption of hydrogen on nickel
,”
J. Phys. Chem.
94
,
8262
8279
(
1990
).
50.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
51.
O. T.
Unke
,
S.
Chmiela
,
H. E.
Sauceda
,
M.
Gastegger
,
I.
Poltavsky
,
K. T.
Schütt
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Machine learning force fields
,”
Chem. Rev.
121
,
10142
10186
(
2021
).
52.
J.
Behler
, “
Four generations of high-dimensional neural network potentials
,”
Chem. Rev.
121
,
10037
10072
(
2021
).
53.
N.
Artrith
and
A.
Urban
, “
An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2
,”
Comput. Mater. Sci.
114
,
135
150
(
2016
).
54.
N.
Artrith
,
A.
Urban
, and
G.
Ceder
, “
Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species
,”
Phys. Rev. B
96
,
014112
(
2017
).
55.
E.
Alpaydin
,
Introduction to Machine Learning
(
MIT Press
,
2020
), Vol.
4
.
56.
G.
Montavon
,
G. B.
Orr
, and
K.-R.
Müller
,
Neural Networks: Tricks of the Trade
(
Springer
,
2012
).
57.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
561
(
1993
).
58.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
,
14251
14269
(
1994
).
59.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
60.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
61.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
62.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
63.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
64.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
65.
M.
Methfessel
and
A. T.
Paxton
, “
High-precision sampling for Brillouin-zone integration in metals
,”
Phys. Rev. B
40
,
3616
3621
(
1989
).
66.
D.
Sheppard
,
P.
Xiao
,
W.
Chemelewski
,
D. D.
Johnson
, and
G.
Henkelman
, “
A generalized solid-state nudged elastic band method
,”
J. Chem. Phys.
136
,
074103
(
2012
).
67.
See https://theory.cm.utexas.edu/vtsttools/index.html for Transition state tools for VASP; accessed 23 05 2024.
68.
R.
Jinnouchi
,
J.
Lahnsteiner
,
F.
Karsai
,
G.
Kresse
, and
M.
Bokdam
, “
Phase transitions of hybrid perovskites simulated by machine-learning force fields trained on the fly with Bayesian inference
,”
Phys. Rev. Lett.
122
,
225701
(
2019
).
69.
R.
Jinnouchi
,
F.
Karsai
, and
G.
Kresse
, “
On-the-fly machine learning force field generation: Application to melting points
,”
Phys. Rev. B
100
,
014105
(
2019
).
70.
R.
Jinnouchi
,
F.
Karsai
,
C.
Verdi
,
R.
Asahi
, and
G.
Kresse
, “
Descriptors representing two- and three-body atomic distributions and their effects on the accuracy of machine-learned inter-atomic potentials
,”
J. Chem. Phys.
152
,
234102
(
2020
).
71.
E. M.
Freiberger
,
J.
Steffen
,
N. J.
Waleska-Wellnhofer
,
F.
Hemauer
,
V.
Schwaab
,
A.
Görling
,
H.-P.
Steinrück
, and
C.
Papp
, “
Bromination of 2D materials
,”
Nanotechnology
35
,
145703
(
2024
).
72.
M.
Moritz
,
S.
Maisel
,
N.
Raman
,
H.
Wittkämper
,
C.
Wichmann
,
M.
Grabau
,
D.
Kahraman
,
J.
Steffen
,
N.
Taccardi
,
A.
Görling
,
M.
Haumann
,
P.
Wasserscheid
,
H.-P.
Steinrück
, and
C.
Papp
, “
Supported catalytically active liquid metal solutions: Liquid metal catalysis with ternary alloys, enhancing activity in propane dehydrogenation
,”
ACS Catal.
14
,
6440
6450
(
2024
).
73.
S.
Nosè
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
519
(
1984
).
74.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
75.
A. M.
Cooper
,
J.
Kästner
,
A.
Urban
, and
N.
Artrith
, “
Efficient training of ANN potentials by including atomic forces via Taylor expansion and application to water and a transition-metal oxide
,”
npj Comput. Mater.
6
,
54
(
2020
).
76.
B.
Hartke
and
S.
Grimme
, “
Reactive force fields made simple
,”
Phys. Chem. Chem. Phys.
17
,
16715
16718
(
2015
).
77.
J.
Steffen
and
B.
Hartke
, “
Cheap but accurate calculation of chemical reaction rate constants from ab initio data, via system-specific, black-box force fields
,”
J. Chem. Phys.
147
,
161701
(
2017
).
78.
J.
Steffen
, “
A new class of reaction path based potential energy surfaces enabling accurate black box chemical rate constant calculations
,”
J. Chem. Phys.
150
,
154105
(
2019
).
79.
H. C.
Andersen
, “
Molecular dynamics simulations at constant pressure and/or temperature
,”
J. Chem. Phys.
72
,
2384
2393
(
1980
).
80.
I. R.
Craig
and
D. E.
Manolopoulos
, “
Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics
,”
J. Chem. Phys.
121
,
3368
3373
(
2004
).
81.
H. C.
Andersen
, “
Rattle: A ‘velocity’ version of the shake algorithm for molecular dynamics calculations
,”
J. Comput. Phys.
52
,
24
34
(
1983
).
82.
See https://github.com/Trebonius91/VASP4CLINT for VASP4CLINT on github; accessed 29 06 2024.
83.
A.
Shahzad
,
F.
Yang
,
J.
Steffen
,
C.
Neiss
,
A.
Panchenko
,
K.
Goetz
,
C.
Vogel
,
M.
Weisser
,
J. P.
Embs
,
W.
Petry
,
W.
Lohstroh
,
A.
Görling
,
I.
Goychuk
, and
T.
Unruh
, “
Atomic diffusion in liquid gallium and gallium-nickel alloys probed by quasielastic neutron scattering and molecular dynamic simulations
,”
J. Phys.: Condens. Matter
36
,
175403
(
2024
).
84.
M.
Leetmaa
and
N. V.
Skorodumova
, “
KMCLib: A general framework for lattice kinetic Monte Carlo (KMC) simulations
,”
Comput. Phys. Commun.
185
,
2340
2349
(
2014
).
85.
M.
Leetmaa
and
N. V.
Skorodumova
, “
KMCLib 1.1: Extended random number support and technical updates to the KMCLib general framework for kinetic Monte-Carlo simulations
,”
Comput. Phys. Commun.
196
,
611
613
(
2015
).
86.
M.
Leetmaa
and
N. V.
Skorodumova
, “
Mean square displacements with error estimates from non-equidistant time-step kinetic Monte Carlo simulations
,”
Comput. Phys. Commun.
191
,
119
124
(
2015
).
87.
J.
Japuloulade
and
K. S.
Neil
, “
Hydrogen adsorption on Ni(100)
,”
Surf. Sci.
35
,
288
301
(
1973
).
88.
K.
Christmann
, “
Adsorption of hydrogen on a nickel (100) surface
,”
Z. Naturforsch. A
34
,
22
29
(
1979
).
89.
S.
Johnson
and
R. J.
Madix
, “
Desorption of hydrogen and carbon monoxide from Ni(100), Ni(100)p(2 × 2)S, and Ni(100)c(2 × 2)S surfaces
,”
Surf. Sci.
108
,
77
98
(
1981
).
90.
A.
Gross
and
M.
Scheffler
, “
Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A dft study
,”
J. Vac. Sci. Technol. A
15
,
1624
1629
(
1997
).
91.
M. J.
Puska
,
R. M.
Nieminen
,
M.
Manninen
,
B.
Chakraborty
,
S.
Holloway
, and
J. K.
Nørskov
, “
Quantum motion of chemisorbed hydrogen on Ni surfaces
,”
Phys. Rev. Lett.
51
,
1081
(
1983
).
92.
T. R.
Mattsson
,
G.
Wahnström
,
L.
Bengtsson
, and
B.
Hammer
, “
Quantum-mechanical calculation of H on Ni(001) using a model potential based on first-principles calculations
,”
Phys. Rev. B
56
,
2258
2266
(
1997
).
93.
A.
Alibakhshi
and
B.
Hartke
, “
Implicitly perturbed Hamiltonian as a class of versatile and general-purpose molecular representations for machine learning
,”
Nat. Commun.
13
,
1245
(
2022
).
94.
A.
Alibakhshi
and
B.
Hartke
, “
Improved prediction of solvation free energies by machine-learning polarizable continuum solvation model
,”
Nat. Commun.
12
,
3584
(
2021
).
95.
A.
Alibakshi
, “
Strategies to develop robust neural network models: Prediction of flash point as a case study
,”
Anal. Chim. Acta
1026
,
69
76
(
2018
).
96.
J.
Behler
, “
Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations
,”
Phys. Chem. Chem. Phys.
13
,
17930
17955
(
2011
).
97.
W.
Li
,
Y.
Ando
,
E.
Minamitani
, and
S.
Watanabe
, “
Study of Li atom diffusion in amorphous Li3PO4 with neural network potential
,”
J. Chem. Phys.
147
,
204106
(
2017
).
98.
T. W.
Ko
,
J. A.
Finkler
,
S.
Goedecker
, and
J.
Behler
, “
Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations
,”
Nat. Commun.
12
,
398
(
2021
).
99.
S.
Manzhos
and
T.
Carrington
, “
Neural network potential energy surfaces for small molecules and reactions
,”
Chem. Rev.
121
,
10187
10217
(
2021
).
100.
Z.
Wu
,
W.-J.
Yin
,
B.
Wen
,
D.
Ma
, and
L.-M.
Liu
, “
Oxygen vacancy diffusion in rutile TiO2: Insight from deep neural network potential simulations
,”
J. Phys. Chem. Lett.
14
,
2208
2214
(
2023
).
101.
B.
Peters
,
Reaction Rate Theory and Rare Events
(
Elsevier
,
2017
), Vol.
1
.
102.
D. R.
Mullins
,
B.
Roop
,
S. A.
Costello
, and
J. M.
White
, “
Isotope effects in surface diffusion: Hydrogen and deuterium on Ni(100)
,”
Surf. Sci.
186
,
67
74
(
1987
).
103.
S. M.
George
,
A. M.
DeSantolo
, and
R. B.
Hall
, “
Surface diffusion of hydrogen on Ni(100) studied using laser-induced thermal desorption
,”
Surf. Sci.
159
,
L425
L432
(
1985
).
104.
P.
Liu
,
C.
Verdi
,
F.
Karsai
, and
G.
Kresse
, “
Phase transitions of zirconia: Machine-learned force fields beyond density functional theory
,”
Phys. Rev. B
105
,
L060102
(
2022
).
105.
C. Z.
Zheng
,
C. K.
Yeung
,
M. M. T.
Loy
, and
X.
Xiao
, “
Step effects and coverage dependence of hydrogen atom diffusion on Pt(111) surfaces
,”
Phys. Rev. B
70
,
205402
(
2004
).
106.
M. V.
Arena
,
E. D.
Westre
,
D. E.
Brown
,
J.
Kutzner
, and
S. M.
George
, “
Surface diffusion of hydrogen on a stepped Ru(001) surface
,”
Surf. Sci.
325
,
151
162
(
1995
).
107.
E. d. V.
Gomez
,
S.
Amanya-Roncancio
,
L. B.
Avalle
,
D. H.
Linares
, and
M. C.
Gimenez
, “
DFT study of adsorption and diffusion of atomic hydrogen on metal surfaces
,”
Appl. Surf. Sci.
420
,
1
8
(
2017
).
108.
L.
Kristinsdottir
and
E.
Skulason
, “
A systematic DFT study of hydrogen diffusion on transition metal surfaces
,”
Surf. Sci.
606
,
1400
1404
(
2012
).
You do not currently have access to this content.