Fluctuations are inherent to biological systems, arising from the stochastic nature of molecular interactions, and influence various aspects of system behavior, stability, and robustness. These fluctuations can be categorized as intrinsic, stemming from the system’s inherent structure and dynamics, and extrinsic, arising from external factors, such as temperature variations. Understanding the interplay between these fluctuations is crucial for obtaining a comprehensive understanding of biological phenomena. However, studying these effects poses significant computational challenges. In this study, we used an underexplored methodology to analyze the effect of extrinsic fluctuations in stochastic systems using ordinary differential equations instead of solving the master equation with stochastic parameters. By incorporating temperature fluctuations into reaction rates, we explored the impact of extrinsic factors on system dynamics. We constructed a master equation and calculated the equations for the dynamics of the first two moments, offering computational efficiency compared with directly solving the chemical master equation. We applied this approach to analyze a biological oscillator, focusing on the p53 model and its response to temperature-induced extrinsic fluctuations. Our findings underscore the impact of extrinsic fluctuations on the nature of oscillations in biological systems, with alterations in oscillatory behavior depending on the characteristics of extrinsic fluctuations. We observed an increased oscillation amplitude and frequency of the p53 concentration cycle. This study provides valuable insights into the effects of extrinsic fluctuations on biological oscillations and highlights the importance of considering them in more complex systems to prevent unwanted scenarios related to health issues.

1.
M. S.
Samoilov
,
G.
Price
, and
A. P.
Arkin
, “
From fluctuations to phenotypes: The physiology of noise
,”
Sci. STKE
2006
,
re17
.
2.
U.
Alon
,
An Introduction to Systems Biology: Design Principles of Biological Circuits
(
Chapman and Hall/CRC
,
2019
).
3.
D.
Del Vecchio
and
R. M.
Murray
,
Biomolecular Feedback Systems
(
Princeton University Press
,
Princeton, NJ
,
2015
).
4.
C.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences
, 4th ed. (
Springer
,
Berlin
,
2009
).
5.
H.
De Jong
, “
Modeling and simulation of genetic regulatory systems: A literature review
,”
J. Comput. Biol.
9
,
67
103
(
2002
).
6.
C. A.
Gomez-Uribe
and
G. C.
Verghese
, “
Mass fluctuation kinetics: Capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations
,”
J. Chem. Phys.
126
,
024109
(
2007
).
7.
M. E.
Hernández-García
and
J.
Velázquez-Castro
, “
Corrected Hill function in stochastic gene regulatory networks
,” arXiv:2307.03057 (
2023
).
8.
M. L.
Simpson
,
C. D.
Cox
,
M. S.
Allen
,
J. M.
McCollum
,
R. D.
Dar
,
D. K.
Karig
, and
J. F.
Cooke
, “
Noise in biological circuits
,”
Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
1
,
214
225
(
2009
).
9.
A.
Hilfinger
and
J.
Paulsson
, “
Separating intrinsic from extrinsic fluctuations in dynamic biological systems
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
12167
12172
(
2011
).
10.
E. A.
Arriaga
, “
Determining biological noise via single cell analysis
,”
Anal. Bioanal. Chem.
393
,
73
80
(
2009
).
11.
X.
Kang
and
C.
Li
, “
A dimension reduction approach for energy landscape: Identifying intermediate states in metabolism-emt network
,”
Adv. Sci.
8
,
2003133
(
2021
).
12.
G.
Gorin
,
J. J.
Vastola
,
M.
Fang
, and
L.
Pachter
, “
Interpretable and tractable models of transcriptional noise for the rational design of single-molecule quantification experiments
,”
Nat. Commun.
13
,
7620
(
2022
).
13.
M.
Voliotis
,
P.
Thomas
,
R.
Grima
, and
C. G.
Bowsher
, “
Stochastic simulation of biomolecular networks in dynamic environments
,”
PLoS Comput. Biol.
12
,
e1004923
(
2016
).
14.
C.
Zechner
and
H.
Koeppl
, “
Uncoupled analysis of stochastic reaction networks in fluctuating environments
,”
PLoS Comput. Biol.
10
,
e1003942
(
2014
).
15.
L.
Ham
,
M. A.
Coomer
, and
M. P.
Stumpf
, “
The chemical Langevin equation for biochemical systems in dynamic environments
,”
J. Chem. Phys.
157
,
094105
(
2022
).
16.
T.
Toni
and
B.
Tidor
, “
Combined model of intrinsic and extrinsic variability for computational network design with application to synthetic biology
,”
PLoS Comput. Biol.
9
,
e1002960
(
2013
).
17.
G.
Caravagna
,
G.
Mauri
, and
A.
d’Onofrio
, “
The interplay of intrinsic and extrinsic bounded noises in biomolecular networks
,”
PLoS One
8
,
e51174
(
2013
).
18.
P. S.
Swain
,
M. B.
Elowitz
, and
E. D.
Siggia
, “
Intrinsic and extrinsic contributions to stochasticity in gene expression
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
12795
12800
(
2002
).
19.
D. T.
Gillespie
, “
Exact stochastic simulation of coupled chemical reactions
,”
J. Phys. Chem.
81
,
2340
2361
(
1977
).
20.
B.
Novák
and
J. J.
Tyson
, “
Design principles of biochemical oscillators
,”
Nat. Rev. Mol. Cell Biol.
9
,
981
991
(
2008
).
21.
T.
Roenneberg
,
T.
Kuehnle
,
M.
Juda
,
T.
Kantermann
,
K.
Allebrandt
,
M.
Gordijn
, and
M.
Merrow
, “
Epidemiology of the human circadian clock
,”
Sleep Med. Rev.
11
,
429
438
(
2007
).
22.
D.
Del Vecchio
,
A. J.
Ninfa
, and
E. D.
Sontag
, “
Modular cell biology: Retroactivity and insulation
,”
Mol. Syst. Biol.
4
,
161
(
2008
).
23.
C.
Briat
and
M.
Khammash
, “
Noise in biomolecular systems: Modeling, analysis, and control implications
,”
Annu. Rev. Control, Rob., Auton. Syst.
6
,
283
311
(
2023
).
24.
K. H.
Vousden
, “
p53: Death star
,”
Cell
103
,
691
694
(
2000
).
25.
D. S.
Brewer
,
Modelling the p53 Gene Regulatory Network
(
University of London, University College
,
London, United Kingdom
,
2006
).
26.
N.
Geva-Zatorsky
,
N.
Rosenfeld
,
S.
Itzkovitz
,
R.
Milo
,
A.
Sigal
,
E.
Dekel
,
T.
Yarnitzky
,
Y.
Liron
,
P.
Polak
,
G.
Lahav
, and
U.
Alon
, “
Oscillations and variability in the p53 system
,”
Mol. Syst. Biol.
2
,
2006.0033
(
2006
).
27.
E.
Batchelor
,
A.
Loewer
, and
G.
Lahav
, “
The ups and downs of p53: Understanding protein dynamics in single cells
,”
Nat. Rev. Cancer
9
,
371
377
(
2009
).
28.
D.-G.
Wang
,
S.
Wang
,
B.
Huang
, and
F.
Liu
, “
Roles of cellular heterogeneity, intrinsic and extrinsic noise in variability of p53 oscillation
,”
Sci. Rep.
9
,
5883
(
2019
).
29.
A. L.
Paek
,
J. C.
Liu
,
A.
Loewer
,
W. C.
Forrester
, and
G.
Lahav
, “
Cell-to-cell variation in p53 dynamics leads to fractional killing
,”
Cell
165
,
631
642
(
2016
).
30.
J. E.
Purvis
,
K. W.
Karhohs
,
C.
Mock
,
E.
Batchelor
,
A.
Loewer
, and
G.
Lahav
, “
p53 dynamics control cell fate
,”
Science
336
,
1440
1444
(
2012
).
31.
E.
Kőrös
,
M.
Orbán
, and
Z.
Nagy
, “
Periodic heat evolution during temporal chemical oscillations
,”
Nat. Phys. Sci.
242
,
30
31
(
1973
).
32.
H. G.
Busse
, “
Temperature variations in an oscillating chemical reaction
,”
Nat. Phys. Sci.
233
,
137
138
(
1971
).
33.
I.
Derevich
, “
Effect of temperature fluctuations of fluid on thermal stability of particles with exothermic chemical reaction
,”
Int. J. Heat Mass Transfer
53
,
5920
5932
(
2010
).
34.
C.
Pilditch
and
J.
Grant
, “
Effect of temperature fluctuations and food supply on the growth and metabolism of juvenile sea scallops (Placopecten magellanicus)
,”
Mar. Biol.
134
,
235
248
(
1999
).
35.
J.
Stricker
,
S.
Cookson
,
M. R.
Bennett
,
W. H.
Mather
,
L. S.
Tsimring
, and
J.
Hasty
, “
A fast, robust and tunable synthetic gene oscillator
,”
Nature
456
,
516
519
(
2008
).
36.
P. H.
Dakappa
and
C.
Mahabala
, “
Analysis of long-term temperature variations in the human body
,”
Crit. Rev. Bioeng.
43
,
385
(
2015
).
37.
J.
Benichou
and
M. H.
Gail
, “
A delta method for implicitly defined random variables
,”
Am. Stat.
43
,
41
44
(
1989
).
38.
A.
Hunziker
,
M. H.
Jensen
, and
S.
Krishna
, “
Stress-specific response of the p53-Mdm2 feedback loop
,”
BMC Syst. Biol.
4
,
94
(
2010
).
39.
L.
Ye
,
Z.
Song
, and
C.
Li
, “
Landscape and flux quantify the stochastic transition dynamics for p53 cell fate decision
,”
J. Chem. Phys.
154
,
025101
(
2021
).
40.
P. W.
Atkins
,
J.
De Paula
, and
J.
Keeler
,
Atkins’ Physical Chemistry
(
Oxford University Press
,
2023
).
41.
D.
Voet
,
J. G.
Voet
, and
C. W.
Pratt
,
Fundamentals of Biochemistry: Life at the Molecular Level
(
Wiley
,
Hoboken, NJ
,
2013
).
42.
E.
Lakatos
,
A.
Ale
,
P. D.
Kirk
, and
M. P.
Stumpf
, “
Multivariate moment closure techniques for stochastic kinetic models
,”
J. Chem. Phys.
143
,
094107
(
2015
).
43.
M.
Wu
,
H.
Ye
,
Z.
Tang
,
C.
Shao
,
G.
Lu
,
B.
Chen
,
Y.
Yang
,
G.
Wang
, and
H.
Hao
, “
p53 dynamics orchestrates with binding affinity to target genes for cell fate decision
,”
Cell Death Dis.
8
,
e3130
(
2017
).
44.
E. N.
Brown
,
Y.
Choe
,
H.
Luithardt
, and
C. A.
Czeisler
, “
A statistical model of the human core-temperature circadian rhythm
,”
Am. J. Physiol.: Endocrinol. Metab.
279
,
E669
E683
(
2000
).
You do not currently have access to this content.