The stability of perovskite materials is profoundly influenced by the presence of moisture in the surrounding environment. While it is well-established that water triggers and accelerates the black–yellow phase transition, leading to the degradation of the photovoltaic properties of perovskites, the underlying microscopic mechanism remains elusive. In this study, we employ classical molecular dynamics simulations to examine the role of water molecules in the yellow–black phase transition in a typical inorganic metal halide perovskite, CsPbI3. We have demonstrated, through interfacial energy calculations and classical nucleation theory, that the phase transition necessitates a crystal–amorphous–crystal two-step pathway rather than the conventional crystal–crystal mechanism. Simulations for CsPbI3 nanowires show that water molecules in the air can enter the amorphous interface between the black and yellow regions. The phase transition rate markedly increases with the influx of interfacial water molecules, which enhance ion diffusivity by reducing the diffusion barrier, thereby expediting the yellow–black phase transition in CsPbI3. We propose a general mechanism through which solvent molecules can greatly facilitate phase transitions that otherwise have prohibitively high transition energies.

1.
J.-W.
Lee
,
S.
Tan
,
S. I.
Seok
,
Y.
Yang
, and
N.-G.
Park
, “
Rethinking the a cation in halide perovskites
,”
Science
375
,
eabj1186
(
2022
).
2.
S.
Tan
,
T.
Huang
,
I.
Yavuz
,
R.
Wang
,
T. W.
Yoon
,
M.
Xu
,
Q.
Xing
,
K.
Park
,
D.-K.
Lee
,
C.-H.
Chen
et al, “
Stability-limiting heterointerfaces of perovskite photovoltaics
,”
Nature
605
,
268
273
(
2022
).
3.
A.
Dey
,
J.
Ye
,
A.
De
,
E.
Debroye
,
S. K.
Ha
,
E.
Bladt
,
A. S.
Kshirsagar
,
Z.
Wang
,
J.
Yin
,
Y.
Wang
et al, “
State of the art and prospects for halide perovskite nanocrystals
,”
ACS Nano
15
,
10775
10981
(
2021
).
4.
J. A.
Steele
,
H.
Jin
,
I.
Dovgaliuk
,
R. F.
Berger
,
T.
Braeckevelt
,
H.
Yuan
,
C.
Martin
,
E.
Solano
,
K.
Lejaeghere
,
S. M.
Rogge
et al, “
Thermal unequilibrium of strained black CsPbI3 thin films
,”
Science
365
,
679
684
(
2019
).
5.
I.
Chung
,
J.-H.
Song
,
J.
Im
,
J.
Androulakis
,
C. D.
Malliakas
,
H.
Li
,
A. J.
Freeman
,
J. T.
Kenney
, and
M. G.
Kanatzidis
, “
CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions
,”
J. Am. Chem. Soc.
134
,
8579
8587
(
2012
).
6.
A. K.
Jena
,
A.
Kulkarni
,
Y.
Sanehira
,
M.
Ikegami
, and
T.
Miyasaka
, “
Stabilization of α-CsPbI3 in ambient room temperature conditions by incorporating Eu into CsPbI3
,”
Chem. Mater.
30
,
6668
6674
(
2018
).
7.
T.
Zhang
,
M. I.
Dar
,
G.
Li
,
F.
Xu
,
N.
Guo
,
M.
Grätzel
, and
Y.
Zhao
, “
Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells
,”
Sci. Adv.
3
,
e1700841
(
2017
).
8.
S.
Valastro
,
G.
Mannino
,
E.
Smecca
,
C.
Bongiorno
,
S.
Sanzaro
,
I.
Deretzis
,
A.
La Magna
,
A. K.
Jena
,
T.
Miyasaka
, and
A.
Alberti
, “
Black-yellow bandgap trade-off during thermal stability tests in low-temperature Eu-doped CsPbI3
,”
Sol. RRL
6
,
2200008
(
2022
).
9.
Z.
Lin
,
Y.
Zhang
,
M.
Gao
,
J. A.
Steele
,
S.
Louisia
,
S.
Yu
,
L. N.
Quan
,
C.-K.
Lin
,
D. T.
Limmer
, and
P.
Yang
, “
Kinetics of moisture-induced phase transformation in inorganic halide perovskite
,”
Matter
4
,
2392
2402
(
2021
).
10.
M.
Lai
,
T.
Lei
,
Y.
Zhang
,
J.
Jin
,
J. A.
Steele
, and
P.
Yang
, “
Phase transition dynamics in one-dimensional halide perovskite crystals
,”
MRS Bull.
46
,
310
316
(
2021
).
11.
Q.
Kong
,
W.
Lee
,
M.
Lai
,
C. G.
Bischak
,
G.
Gao
,
A. B.
Wong
,
T.
Lei
,
Y.
Yu
,
L.-W.
Wang
,
N. S.
Ginsberg
, and
P.
Yang
, “
Phase-transition–induced p-n junction in single halide perovskite nanowire
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
8889
8894
(
2018
).
12.
G.-W.
Chen
,
B.
Wen
,
J.-S.
Xie
,
L.-K.
Chen
, and
S.-C.
Zhu
, “
Resolving the perovskite degradation mechanism by machine learning potential: The case of CsPbI3
,”
J. Phys. Chem. C
127
,
11692
11699
(
2023
).
13.
G.-Y.
Chen
,
Z.-D.
Guo
,
X.-G.
Gong
, and
W.-J.
Yin
, “
Kinetic pathway of γ-to-δ phase transition in CsPbI3
,”
Chem
8
,
3120
3129
(
2022
).
14.
C. G.
Bischak
,
M.
Lai
,
Z.
Fan
,
D.
Lu
,
P.
David
,
D.
Dong
,
H.
Chen
,
A. S.
Etman
,
T.
Lei
,
J.
Sun
et al, “
Liquid-like interfaces mediate structural phase transitions in lead halide perovskites
,”
Matter
3
,
534
545
(
2020
).
15.
Z.
Yao
,
W.
Zhao
, and
S. F.
Liu
, “
Stability of the CsPbI3 perovskite: From fundamentals to improvements
,”
J. Mater. Chem. A
9
,
11124
11144
(
2021
).
16.
Z.
Lin
,
M. C.
Folgueras
,
H. K.
Le
,
M.
Gao
, and
P.
Yang
, “
Laser-accelerated phase transformation in cesium lead iodide perovskite
,”
Matter
5
,
1455
1465
(
2022
).
17.
X.
Ling
,
S.
Zhou
,
J.
Yuan
,
J.
Shi
,
Y.
Qian
,
B. W.
Larson
,
Q.
Zhao
,
C.
Qin
,
F.
Li
,
G.
Shi
et al, “
14.1% CsPbI3 perovskite quantum dot solar cells via cesium cation passivation
,”
Adv. Energy Mater.
9
,
1900721
(
2019
).
18.
A.
Swarnkar
,
A. R.
Marshall
,
E. M.
Sanehira
,
B. D.
Chernomordik
,
D. T.
Moore
,
J. A.
Christians
,
T.
Chakrabarti
, and
J. M.
Luther
, “
Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics
,”
Science
354
,
92
95
(
2016
).
19.
F. P.
García de Arquer
,
D. V.
Talapin
,
V. I.
Klimov
,
Y.
Arakawa
,
M.
Bayer
, and
E. H.
Sargent
, “
Semiconductor quantum dots: Technological progress and future challenges
,”
Science
373
,
eaaz8541
(
2021
).
20.
C.-K.
Lin
,
Y.
Zhang
,
M.
Gao
,
J.-A.
Lin
,
H. K.
Le
,
Z.
Lin
, and
P.
Yang
, “
Controlling the phase transition in CsPbI3 nanowires
,”
Nano Lett.
22
,
2437
2443
(
2022
).
21.
S.
Dastidar
,
C. J.
Hawley
,
A. D.
Dillon
,
A. D.
Gutierrez-Perez
,
J. E.
Spanier
, and
A. T.
Fafarman
, “
Quantitative phase-change thermodynamics and metastability of perovskite-phase cesium lead iodide
,”
J. Phys. Chem. Lett.
8
,
1278
1282
(
2017
).
22.
D. B.
Straus
,
S.
Guo
, and
R. J.
Cava
, “
Kinetically stable single crystals of perovskite-phase CsPbI3
,”
J. Am. Chem. Soc.
141
,
11435
11439
(
2019
).
23.
Q.
Wang
,
B.
Chen
,
Y.
Liu
,
Y.
Deng
,
Y.
Bai
,
Q.
Dong
, and
J.
Huang
, “
Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films
,”
Energy Environ. Sci.
10
,
516
522
(
2017
).
24.
S.
Cheng
and
H.
Zhong
, “
What happens when halide perovskites meet with water?
,”
J. Phys. Chem. Lett.
13
,
2281
2290
(
2022
).
25.
N. N.
Intan
and
J.
Pfaendtner
, “
Role of surface features on the initial dissolution of CH3NH3PbI3 perovskite in liquid water: An ab initio molecular dynamics study
,”
ACS Nano
17
,
22371
22387
(
2023
).
26.
C.
Caddeo
,
M. I.
Saba
,
S.
Meloni
,
A.
Filippetti
, and
A.
Mattoni
, “
Collective molecular mechanisms in the CH3NH3PbI3 dissolution by liquid water
,”
ACS Nano
11
,
9183
9190
(
2017
).
27.
L.
Zhang
,
M.-G.
Ju
, and
W.
Liang
, “
The effect of moisture on the structures and properties of lead halide perovskites: A first-principles theoretical investigation
,”
Phys. Chem. Chem. Phys.
18
,
23174
23183
(
2016
).
28.
E.
Mosconi
,
J. M.
Azpiroz
, and
F.
De Angelis
, “
Ab initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water
,”
Chem. Mater.
27
,
4885
4892
(
2015
).
29.
J.
Lin
,
M.
Lai
,
L.
Dou
,
C. S.
Kley
,
H.
Chen
,
F.
Peng
,
J.
Sun
,
D.
Lu
,
S. A.
Hawks
,
C.
Xie
et al, “
Thermochromic halide perovskite solar cells
,”
Nat. Mater.
17
,
261
267
(
2018
).
30.
F.
Tian
,
W.
Feng
,
B.
Xing
,
X.
He
,
W. A.
Saidi
, and
L.
Zhang
, “
Grain boundaries in methylammonium lead halide perovskites facilitate water diffusion
,”
Adv. Energy Sustainability Res.
2
,
2100087
(
2021
).
31.
W.
Kaiser
,
D.
Ricciarelli
,
E.
Mosconi
,
A. A.
Alothman
,
F.
Ambrosio
, and
F.
De Angelis
, “
Stability of tin- versus lead-halide perovskites: Ab initio molecular dynamics simulations of perovskite/water interfaces
,”
J. Phys. Chem. Lett.
13
,
2321
2329
(
2022
).
32.
D. L.
Busipalli
,
K.-Y.
Lin
,
S.
Nachimuthu
, and
J.-C.
Jiang
, “
Enhanced moisture stability of cesium lead iodide perovskite solar cells—A first-principles molecular dynamics study
,”
Phys. Chem. Chem. Phys.
22
,
5693
5701
(
2020
).
33.
K. E.
Kweon
,
J.
Varley
,
T.
Ogitsu
,
L. F.
Wan
,
M.
Shelby
,
Z.
Song
,
R. J.
Ellingson
,
Y.
Yan
, and
J. R.
Lee
, “
Influence of external conditions on the black-to-yellow phase transition of CsPbI3 based on first-principles calculations: Pressure and moistucre
,”
Chem. Mater.
35
,
2321
2329
(
2023
).
34.
B.
Conings
,
J.
Drijkoningen
,
N.
Gauquelin
,
A.
Babayigit
,
J.
D’Haen
,
L.
D’Olieslaeger
,
A.
Ethirajan
,
J.
Verbeeck
,
J.
Manca
,
E.
Mosconi
et al, “
Intrinsic thermal instability of methylammonium lead trihalide perovskite
,”
Adv. Energy Mater.
5
,
1500477
(
2015
).
35.
Z.
Guo
,
J.
Fu
,
G.
Chen
,
F.
Liu
,
C.
Yu
,
R.
Lu
, and
W.-J.
Yin
, “
First domino in the structural collapse of perovskite CsPbI3 and its stabilizing strategies
,”
Adv. Funct. Mater.
34
,
2308246
(
2023
).
36.
Z.
Li
,
F.
Zhou
,
Q.
Wang
,
L.
Ding
, and
Z.
Jin
, “
Approaches for thermodynamically stabilized CsPbI3 solar cells
,”
Nano Energy
71
,
104634
(
2020
).
37.
Y.
Wang
,
J.
Liu
,
J.
Wang
, and
Z.
Fan
, “
Phase stability and transformations in CsSnI3: Is anharmonicity negligible?
,”
J. Phys. Chem. C
126
,
19470
19479
(
2022
).
38.
X.
Hao
,
J.
Liu
,
M.
Deng
, and
Z.
Fan
, “
Critical evaluation of five classical force fields for CsPbI3: Limitations in modeling phase stability and transformations
,”
J. Phys. Chem. C
127
,
20157
20168
(
2023
).
39.
D. W.
Oxtoby
, “
Nucleation of first-order phase transitions
,”
Acc. Chem. Res.
31
,
91
97
(
1998
).
40.
T.
Braeckevelt
,
R.
Goeminne
,
S.
Vandenhaute
,
S.
Borgmans
,
T.
Verstraelen
,
J. A.
Steele
,
M. B.
Roeffaers
,
J.
Hofkens
,
S. M.
Rogge
, and
V.
Van Speybroeck
, “
Accurately determining the phase transition temperature of CsPbI3 via random-phase approximation calculations and phase-transferable machine learning potentials
,”
Chem. Mater.
34
,
8561
8576
(
2022
).
41.
E.
Fransson
,
J.
Wiktor
, and
P.
Erhart
, “
Phase transitions in inorganic halide perovskites from machine-learned potentials
,”
J. Phys. Chem. C
127
,
13773
13781
(
2023
).
42.
X.
Chen
,
G.
Chen
, and
W.-J.
Yin
, “
Interphase boundaries and their impact on carrier dynamics in lead halide perovskites
,”
J. Phys. Chem. Lett.
14
,
6459
6463
(
2023
).
43.
D. A.
Porter
and
K. E.
Easterling
,
Phase Transformations in Metals and Alloys (Revised Reprint)
(
CRC Press
,
2009
).
44.
A.
Waleed
,
M. M.
Tavakoli
,
L.
Gu
,
S.
Hussain
,
D.
Zhang
,
S.
Poddar
,
Z.
Wang
,
R.
Zhang
, and
Z.
Fan
, “
All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors
,”
Nano Lett.
17
,
4951
4957
(
2017
).
45.
B.
Akbali
,
G.
Topçu
,
T.
Guner
,
M.
Ozcan
,
M. M.
Demir
, and
H.
Sahin
, “
CsPbBr3 perovskites: Theoretical and experimental investigation on water-assisted transition from nanowire formation to degradation
,”
Phys. Rev. Mater.
2
,
034601
(
2018
).
46.
X.
Luo
,
W.
Liu
,
Z.
Wang
,
T.
Lei
,
P.
Yang
, and
Y.
Yu
, “
Thermally driven phase transition of halide perovskites revealed by big data-powered in situ electron microscopy
,”
J. Chem. Phys.
158
,
134705
(
2023
).
47.
H.
Lyu
,
H.
Su
, and
Z.
Lin
, “
Two-stage dynamic transformation from δ-to α-CsPbI3
,”
J. Phys. Chem. Lett.
15
,
2228
2232
(
2024
).
48.
P.
Ahlawat
,
A.
Hinderhofer
,
E. A.
Alharbi
,
H.
Lu
,
A.
Ummadisingu
,
H.
Niu
,
M.
Invernizzi
,
S. M.
Zakeeruddin
,
M. I.
Dar
,
F.
Schreiber
et al, “
A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure α-FAPbI3
,”
Sci. Adv.
7
,
eabe3326
(
2021
).
49.
J. R.
Espinosa
,
C.
Vega
,
C.
Valeriani
, and
E.
Sanz
, “
The crystal-fluid interfacial free energy and nucleation rate of NaCl from different simulation methods
,”
J. Chem. Phys.
142
,
194709
(
2015
).
50.
J. R.
Espinosa
,
C.
Vega
,
C.
Valeriani
, and
E.
Sanz
, “
Seeding approach to crystal nucleation
,”
J. Chem. Phys.
144
,
034501
(
2016
).
51.
J.
Crapse
,
N.
Pappireddi
,
M.
Gupta
,
S. Y.
Shvartsman
,
E.
Wieschaus
, and
M.
Wühr
, “
Evaluating the Arrhenius equation for developmental processes
,”
Mol. Syst. Biol.
17
,
e9895
(
2021
).
52.
C.
Eames
,
J. M.
Frost
,
P. R.
Barnes
,
B. C.
O’regan
,
A.
Walsh
, and
M. S.
Islam
, “
Ionic transport in hybrid lead iodide perovskite solar cells
,”
Nat. Commun.
6
,
7497
(
2015
).
53.
U.-G.
Jong
,
C.-J.
Yu
,
G.-C.
Ri
,
A. P.
McMahon
,
N. M.
Harrison
,
P. R.
Barnes
, and
A.
Walsh
, “
Influence of water intercalation and hydration on chemical decomposition and ion transport in methylammonium lead halide perovskites
,”
J. Mater. Chem. A
6
,
1067
1074
(
2018
).
54.
Y.
Jo
,
K. S.
Oh
,
M.
Kim
,
K.-H.
Kim
,
H.
Lee
,
C.-W.
Lee
, and
D. S.
Kim
, “
High performance of planar perovskite solar cells produced from PbI2(DMSO) and PbI2(NMP) complexes by intramolecular exchange
,”
Adv. Mater. Interfaces
3
,
1500768
(
2016
).
55.
D.
Ricciarelli
,
W.
Kaiser
,
E.
Mosconi
,
J.
Wiktor
,
M. W.
Ashraf
,
L.
Malavasi
,
F.
Ambrosio
, and
F.
De Angelis
, “
Reaction mechanism of photocatalytic hydrogen production at water/tin halide perovskite interfaces
,”
ACS Energy Lett.
7
,
1308
1315
(
2022
).
56.
Q.
Lin
,
S.
Bernardi
,
B.
Shabbir
,
Q.
Ou
,
M.
Wang
,
W.
Yin
,
S.
Liu
,
A. S.
Chesman
,
S. O.
Fürer
,
G.
Si
,
N.
Medhekar
,
J.
Jasieniak
,
A.
Widmer-Cooper
,
W.
Mao
, and
U.
Bach
, “
Phase-control of single-crystalline inorganic halide perovskites via molecular coordination engineering
,”
Adv. Funct. Mater.
32
,
2109442
(
2022
).
57.
P. R. t.
Wolde
and
D.
Frenkel
, “
Enhancement of protein crystal nucleation by critical density fluctuations
,”
Science
277
,
1975
1978
(
1997
).
58.
Y.
Peng
,
F.
Wang
,
Z.
Wang
,
A. M.
Alsayed
,
Z.
Zhang
,
A. G.
Yodh
, and
Y.
Han
, “
Two-step nucleation mechanism in solid–solid phase transitions
,”
Nat. Mater.
14
,
101
108
(
2015
).
59.
V. I.
Levitas
,
Z.
Ren
,
Y.
Zeng
,
Z.
Zhang
, and
G.
Han
, “
Crystal–crystal phase transformation via surface-induced virtual premelting
,”
Phys. Rev. B
85
,
220104
(
2012
).
60.
V. I.
Levitas
, “
Crystal-amorphous and crystal–crystal phase transformations via virtual melting
,”
Phys. Rev. Lett.
95
,
075701
(
2005
).
61.
V. I.
Levitas
,
B. F.
Henson
,
L. B.
Smilowitz
, and
B. W.
Asay
, “
Solid–solid phase transformation via virtual melting significantly below the melting temperature
,”
Phys. Rev. Lett.
92
,
235702
(
2004
).
62.
J.
Yang
,
B. D.
Siempelkamp
,
D.
Liu
, and
T. L.
Kelly
, “
Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques
,”
ACS Nano
9
,
1955
1963
(
2015
).
63.
Y.
Li
,
W.
Zhou
,
Y.
Li
,
W.
Huang
,
Z.
Zhang
,
G.
Chen
,
H.
Wang
,
G.-H.
Wu
,
N.
Rolston
,
R.
Vila
et al, “
Unravelling degradation mechanisms and atomic structure of organic–inorganic halide perovskites by Cryo-EM
,”
Joule
3
,
2854
2866
(
2019
).
64.
J.
Hidalgo
,
W.
Kaiser
,
Y.
An
,
R.
Li
,
Z.
Oh
,
A.-F.
Castro-Méndez
,
D. K.
LaFollette
,
S.
Kim
,
B.
Lai
,
J.
Breternitz
et al, “
Synergistic role of water and oxygen leads to degradation in formamidinium-based halide perovskites
,”
J. Am. Chem. Soc.
145
,
24549
24557
(
2023
).
You do not currently have access to this content.