Molecular simulations are a powerful tool to understand phenomena and obtain properties of gas hydrate systems. The direct coexistence method (DCM) in the NVT or NPT ensembles, the most commonly used method to determine hydrate dissociation temperatures, can be computationally expensive due to the need for several long simulations. Through an extensive set of simulations, we report here the details of the DCM within the NPH (isobaric–isenthalpic) ensemble, which require fewer and shorter trajectories. The dissociation pressure of methane hydrates is obtained for pressures of 4, 8, 15, 30, and 50 MPa. The values are in agreement with other literature simulations and experimental data. The results are further validated with the calculation of the enthalpy of dissociation, with a value of 50 kJ/mol of methane, also in agreement with the literature. The complexity of a multiphase and multicomponent system presents challenges lacking in simpler water/ice systems. These are found to be dependent on energy conservation. The optimal set of parameters to achieve it is also reported, including a smaller time step and the use of double precision, along with an analysis of some factors that could affect the convergence of the method. Although these parameters require more computational cost, the NPH ensemble is successful in providing the dissociation temperature of gas hydrates in fewer simulations than other ensembles and with productions lasting only 500 ns.

1.
A. K.
Sum
,
C. A.
Koh
, and
E. D.
Sloan
, “
Clathrate hydrates: From laboratory science to engineering practice
,”
Ind. Eng. Chem. Res.
48
,
7457
7465
(
2009
).
2.
J. A.
Ripmeester
and
S.
Alavi
,
Clathrate Hydrates: Molecular Science and Characterization
(
Wiley-VCH GmbH
,
2022
).
3.
N. J.
English
,
J. K.
Johnson
, and
C. E.
Taylor
, “
Molecular-dynamics simulations of methane hydrate dissociation
,”
J. Chem. Phys.
123
,
244503
(
2005
).
4.
N. J.
English
and
G. M.
Phelan
, “
Molecular dynamics study of thermal-driven methane hydrate dissociation
,”
J. Chem. Phys.
131
,
074704
(
2009
).
5.
S.
Alavi
and
J. A.
Ripmeester
, “
Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition
,”
J. Chem. Phys.
132
,
144703
(
2010
).
6.
S. A.
Bagherzadeh
,
P.
Englezos
,
S.
Alavi
, and
J. A.
Ripmeester
, “
Molecular simulation of non-equilibrium methane hydrate decomposition process
,”
J. Chem. Thermodyn.
44
,
13
19
(
2012
).
7.
N. J.
English
and
E. T.
Clarke
, “
Molecular dynamics study of CO2 hydrate dissociation: Fluctuation-dissipation and non-equilibrium analysis
,”
J. Chem. Phys.
139
,
094701
(
2013
).
8.
K.
Li
,
B.
Chen
,
Y.
Song
, and
M.
Yang
, “
Molecular dynamics simulation of the effects of different thermodynamic parameters on methane hydrate dissociation: An analysis of temperature, pressure and gas concentrations
,”
Fluid Phase Equilib.
516
,
112606
(
2020
).
9.
M. R.
Walsh
,
C. A.
Koh
,
E. D.
Sloan
,
A. K.
Sum
, and
D. T.
Wu
, “
Microsecond simulations of spontaneous methane hydrate nucleation and growth
,”
Science
326
,
1095
1098
(
2009
).
10.
M. R.
Walsh
,
G. T.
Beckham
,
C. A.
Koh
,
E. D.
Sloan
,
D. T.
Wu
, and
A. K.
Sum
, “
Methane hydrate nucleation rates from molecular dynamics simulations: Effects of aqueous methane concentration, interfacial curvature, and system size
,”
J. Chem. Phys. C
115
,
21241
21248
(
2011
).
11.
M. R.
Walsh
,
J. D.
Rainey
,
P. G.
Lafond
,
D.-H.
Park
,
G. T.
Beckham
,
M. D.
Jones
,
K.-H.
Lee
,
C. A.
Koh
,
E. D.
Sloan
,
D. T.
Wu
, and
A. K.
Sum
, “
The cages, dynamics, and structuring of incipient methane clathrate hydrates
,”
Phys. Chem. Chem. Phys.
13
,
19951
(
2011
).
12.
L. C.
Jacobson
,
W.
Hujo
, and
V.
Molinero
, “
Amorphous precursors in the nucleation of clathrate hydrates
,”
J. Am. Chem. Soc.
132
,
11806
11811
(
2010
).
13.
L. C.
Jacobson
,
W.
Hujo
, and
V.
Molinero
, “
Nucleation pathways of clathrate hydrates: Effect of guest size and solubility
,”
J. Chem. Phys. B
114
,
13796
13807
(
2010
).
14.
A. H.
Nguyen
,
L. C.
Jacobson
, and
V.
Molinero
, “
Structure of the clathrate/solution interface and mechanism of cross-nucleation of clathrate hydrates
,”
J. Chem. Phys. C
116
,
19828
19838
(
2012
).
15.
Y.
Chen
,
C.
Chen
, and
A. K.
Sum
, “
Propane and water: The cooperativity of unlikely molecules to form clathrate structures
,”
J. Chem. Phys. B
124
,
4661
4671
(
2020
).
16.
Y.
Chen
,
C.
Chen
, and
A. K.
Sum
, “
Molecular resolution into the nucleation and crystal growth of clathrate hydrates formed from methane and propane mixtures
,”
Cryst. Growth Des.
21
,
960
973
(
2021
).
17.
A. J. C.
Ladd
and
L. V.
Woodcock
, “
Triple-point coexistence properties of the Lennard–Jones system
,”
Chem. Phys. Lett.
51
,
155
159
(
1977
).
18.
A.
Ladd
and
L.
Woodcock
, “
Interfacial and co-existence properties of the Lennard–Jones system at the triple point
,”
Mol. Phys.
36
,
611
619
(
1978
).
19.
C.
Vega
,
E.
Sanz
,
J. L. F.
Abascal
, and
E. G.
Noya
, “
Determination of phase diagrams via computer simulation: Methodology and applications to water, electrolytes and proteins
,”
J. Phys.: Condens. Matter
20
,
153101
(
2008
).
20.
E. G.
Noya
,
C.
Vega
, and
E.
de Miguel
, “
Determination of the melting point of hard spheres from direct coexistence simulation methods
,”
J. Chem. Phys.
128
,
154507
(
2008
).
21.
M. M.
Conde
,
M.
Rovere
, and
P.
Gallo
, “
High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique
,”
J. Chem. Phys.
147
,
244506
(
2017
).
22.
R.
García Fernández
,
J. L. F.
Abascal
, and
C.
Vega
, “
The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface
,”
J. Chem. Phys.
124
,
144506
(
2006
).
23.
M. M.
Conde
and
C.
Vega
, “
Determining the three-phase coexistence line in methane hydrates using computer simulations
,”
J. Chem. Phys.
133
,
064507
(
2010
).
24.
Y.-T.
Tung
,
L.-J.
Chen
,
Y.-P.
Chen
, and
S.-T.
Lin
, “
The growth of structure I methane hydrate from molecular dynamics simulations
,”
The J. Phys. Chem. B
114
,
10804
10813
(
2010
).
25.
V. K.
Michalis
,
J.
Costandy
,
I. N.
Tsimpanogiannis
,
A. K.
Stubos
, and
I. G.
Economou
, “
Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology
,”
J. Chem. Phys.
142
,
044501
(
2015
).
26.
X.
Hao
,
C.
Li
,
C.
Liu
,
Q.
Meng
, and
J.
Sun
, “
The performance of OPC water model in prediction of the phase equilibria of methane hydrate
,”
J. Chem. Phys.
157
,
014504
(
2022
).
27.
D.
Luis
,
J.
López-Lemus
,
M. L.
Maspoch
,
E.
Franco-Urquiza
, and
H.
Saint-Martin
, “
Methane hydrate: Shifting the coexistence temperature to higher temperatures with an external electric field
,”
Mol. Simul.
42
,
1014
1023
(
2016
).
28.
S.
Blazquez
,
C.
Vega
, and
M. M.
Conde
, “
Three phase equilibria of the methane hydrate in NaCl solutions: A simulation study
,”
J. Mol. Liq.
383
,
122031
(
2023
).
29.
G. S.
Smirnov
and
V. V.
Stegailov
, “
Melting and superheating of sI methane hydrate: Molecular dynamics study
,”
J. Chem. Phys.
136
,
044523
(
2012
).
30.
D.
Yuhara
,
P. E.
Brumby
,
D. T.
Wu
,
A. K.
Sum
, and
K.
Yasuoka
, “
Analysis of three-phase equilibrium conditions for methane hydrate by isometric–isothermal molecular dynamics simulations
,”
J. Chem. Phys.
148
,
184501
(
2018
).
31.
D.
Jin
and
B.
Coasne
, “
Molecular simulation of the phase diagram of methane hydrate: Free energy calculations, direct coexistence method, and hyperparallel tempering
,”
Langmuir
33
,
11217
11230
(
2017
).
32.
J.
Costandy
,
V. K.
Michalis
,
I. N.
Tsimpanogiannis
,
A. K.
Stubos
, and
I. G.
Economou
, “
The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates
,”
J. Chem. Phys.
143
,
094506
(
2015
).
33.
J. M.
Míguez
,
M. M.
Conde
,
J.-P.
Torré
,
F. J.
Blas
,
M. M.
Piñeiro
, and
C.
Vega
, “
Molecular dynamics simulation of CO2 hydrates: Prediction of three phase coexistence line
,”
J. Chem. Phys.
142
,
124505
(
2015
).
34.
X.
Hao
,
C.
Li
,
Q.
Meng
,
J.
Sun
,
L.
Huang
,
Q.
Bu
, and
C.
Li
, “
Molecular dynamics simulation of the three-phase equilibrium line of CO2 hydrate with OPC water model
,”
ACS Omega
8
,
39847
39854
(
2023
).
35.
V. K.
Michalis
,
I. N.
Tsimpanogiannis
,
A. K.
Stubos
, and
I. G.
Economou
, “
Direct phase coexistence molecular dynamics study of the phase equilibria of the ternary methane–carbon dioxide–water hydrate system
,”
Phys. Chem. Chem. Phys.
18
,
23538
23548
(
2016
).
36.
V. K.
Michalis
,
I. G.
Economou
,
A. K.
Stubos
, and
I. N.
Tsimpanogiannis
, “
Phase equilibria molecular simulations of hydrogen hydrates via the direct phase coexistence approach
,”
J. Chem. Phys.
157
,
154501
(
2022
).
37.
A. R.
Finney
and
P. M.
Rodger
, “
Applying the Z method to estimate temperatures of melting in structure II clathrate hydrates
,”
Phys. Chem. Chem. Phys.
13
,
19979
19987
(
2011
).
38.
D.
Brown
and
J.
Clarke
, “
A comparison of constant energy, constant temperature and constant pressure ensembles in molecular dynamics simulations of atomic liquids
,”
Mol. Phys.
51
,
1243
1252
(
1984
).
39.
S.
Yoo
,
S. S.
Xantheas
, and
X. C.
Zeng
, “
The melting temperature of bulk silicon from ab initio molecular dynamics simulations
,”
Chem. Phys. Lett.
481
,
88
90
(
2009
).
40.
V. S.
Dozhdikov
,
A. Y.
Basharin
, and
P. R.
Levashov
, “
Two-phase simulation of the crystalline silicon melting line at pressures from –1 to 3 GPa
,”
J. Chem. Phys.
137
,
054502
(
2012
).
41.
E.
Asadi
,
M.
Asle Zaeem
,
S.
Nouranian
, and
M. I.
Baskes
, “
Two-phase solid–liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method
,”
Acta Mater.
86
,
169
181
(
2015
).
42.
J.
Wang
,
S.
Yoo
,
J.
Bai
,
J. R.
Morris
, and
X. C.
Zeng
, “
Melting temperature of ice Ih calculated from coexisting solid-liquid phases
,”
J. Chem. Phys.
123
,
36101
(
2005
).
43.
K. R.
Brorsen
,
S. Y.
Willow
,
S. S.
Xantheas
, and
M. S.
Gordon
, “
The melting temperature of liquid water with the effective fragment potential
,”
J. Phys. Chem. Lett.
6
,
3555
3559
(
2015
).
44.
S.
Yoo
,
X. C.
Zeng
, and
S. S.
Xantheas
, “
On the phase diagram of water with density functional theory potentials: The melting temperature of ice I(h) with the Perdew–Burke–Ernzerhof and Becke–Lee–Yang–Parr functionals
,”
J. Chem. Phys.
130
,
221102
(
2009
).
45.
S.
Yoo
and
S. S.
Xantheas
, “
Communication: The effect of dispersion corrections on the melting temperature of liquid water
,”
J. Chem. Phys.
134
,
121105
(
2011
).
46.
H.
Jiang
,
O. A.
Moultos
,
I. G.
Economou
, and
A. Z.
Panagiotopoulos
, “
Hydrogen-bonding polarizable intermolecular potential model for water
,”
J. Phys. Chem. B
120
,
12358
12370
(
2016
).
47.
A. H.
Nguyen
and
V.
Molinero
, “
Stability and metastability of bromine clathrate polymorphs
,”
J. Phys. Chem. B
117
,
6330
6338
(
2013
).
48.
A. H.
Nguyen
,
M. A.
Koc
,
T. D.
Shepherd
, and
V.
Molinero
, “
Structure of the ice–clathrate interface
,”
J. Phys. Chem. C
119
,
4104
4117
(
2015
).
49.
M.
Adibifard
and
O.
Olorode
, “
Large-scale nonequilibrium molecular studies of thermal hydrate dissociation
,”
J. Phys. Chem. B
127
,
6543
6550
(
2023
).
50.
M.
Matsumoto
,
T.
Yagasaki
, and
H.
Tanaka
, “
GenIce: Hydrogen-disordered ice generator
,”
J. Comput. Chem.
39
,
61
64
(
2018
).
51.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
, “
GROMACS: Fast, flexible, and free
,”
J. Comput. Chem.
26
,
1701
1718
(
2005
).
52.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
, “
A potential model for the study of ices and amorphous water: TIP4P/Ice
,”
J. Chem. Phys.
122
,
234511
(
2005
).
53.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
11236
(
1996
).
54.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
55.
S.
Blazquez
,
J.
Algaba
,
J. M.
Míguez
,
C.
Vega
,
F. J.
Blas
, and
M. M.
Conde
, “
Three-phase equilibria of hydrates from computer simulation. I. Finite-size effects in the methane hydrate
,”
J. Chem. Phys.
160
,
164721
(
2024
).
56.
Y.
Hu
,
B. R.
Lee
, and
A. K.
Sum
, “
Universal correlation for gas hydrates suppression temperature of inhibited systems: I. Single salts
,”
AIChE J.
63
,
5111
5124
(
2017
).
57.
Y.
Hu
,
B. R.
Lee
, and
A. K.
Sum
, “
Insight into increased stability of methane hydrates at high pressure from phase equilibrium data and molecular structure
,”
Fluid Phase Equilib.
450
,
24
29
(
2017
).
58.
E. D.
Sloan
, “
Fundamental principles and applications of natural gas hydrates
,”
Nature
426
,
353
359
(
2003
).
59.
G. K.
Anderson
, “
Enthalpy of dissociation and hydration number of methane hydrate from the Clapeyron equation
,”
J. Chem. Thermodyn.
36
,
1119
1127
(
2004
).
60.
I. N.
Tsimpanogiannis
,
V. K.
Michalis
, and
I. G.
Economou
, “
Enthalpy of dissociation of methane hydrates at a wide pressure and temperature range
,”
Fluid Phase Equilib.
489
,
30
40
(
2019
).
61.
S.
Alavi
and
R.
Ohmura
, “
Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates
,”
J. Chem. Phys.
145
,
154708
(
2016
).
You do not currently have access to this content.