This paper presents a mean field theory of electrolyte solutions, extending the classical Debye–Hückel–Onsager theory to provide a detailed description of the electrical conductivity in strong electrolyte solutions. The theory systematically incorporates the effects of ion specificity, such as steric interactions, hydration of ions, and their spatial charge distributions, into the mean-field framework. This allows for the calculation of ion mobility and electrical conductivity, while accounting for relaxation and hydrodynamic phenomena. At low concentrations, the model reproduces the well-known Kohlrausch’s limiting law. Using the exponential (Slater-type) charge distribution function for solvated ions, we demonstrate that experimental data on the electrical conductivity of aqueous 1:1, 2:1, and 3:1 electrolyte solutions can be approximated over a broad concentration range by adjusting a single free parameter representing the spatial scale of the nonlocal ion charge distribution. Using the fitted value of this parameter at 298.15 K, we obtain good agreement with the available experimental data when calculating electrical conductivity across different temperatures. We also analyze the effects of temperature and electrolyte concentration on the relaxation and electrophoretic contributions to total electrical conductivity, explaining the underlying physical mechanisms responsible for the observed behavior.

1.
R. A.
Robinson
and
R. H.
Stokes
,
Electrolyte Solutions
(
Courier Corporation
,
2002
).
2.
H. J.
Cooke
, “
Neuroimmune signaling in regulation of intestinal ion transport
,”
Am. J. Physiol. Gastrointest. Liver Physiol.
266
,
G167
G178
(
1994
).
3.
I.
Schoen
and
P.
Fromherz
, “
The mechanism of extracellular stimulation of nerve cells on an electrolyte-oxide-semiconductor capacitor
,”
Biophys. J.
92
,
1096
1111
(
2007
).
4.
D. F.
Bohr
,
D. C.
Brodie
, and
D. H.
Cheu
, “
Effect of electrolytes on arterial muscle contraction
,”
Circulation
17
,
746
749
(
1958
).
5.
D. F.
Bohr
, “
Electrolytes and smooth muscle contraction
,”
Pharmacol. Rev.
16
,
85
111
(
1964
).
6.
N.
Metheny
,
Fluid and Electrolyte Balance
(
Jones & Bartlett Publishers
,
2012
).
7.
E. J.
Cussen
, “
Structure and ionic conductivity in lithium garnets
,”
J. Mater. Chem.
20
,
5167
5173
(
2010
).
8.
R.
Zahn
,
M. F.
Lagadec
,
M.
Hess
, and
V.
Wood
, “
Improving ionic conductivity and lithium-ion transference number in lithium-ion battery separators
,”
ACS Appl. Mater. Interfaces
8
,
32637
32642
(
2016
).
9.
Y.
Deng
,
C.
Eames
,
B.
Fleutot
,
R.
David
,
J.-N.
Chotard
,
E.
Suard
,
C.
Masquelier
, and
M. S.
Islam
, “
Enhancing the lithium ion conductivity in lithium superionic conductor (LISICON) solid electrolytes through a mixed polyanion effect
,”
ACS Appl. Mater. Interfaces
9
,
7050
7058
(
2017
).
10.
L.
Long
,
S.
Wang
,
M.
Xiao
, and
Y.
Meng
, “
Polymer electrolytes for lithium polymer batteries
,”
J. Mater. Chem. A
4
,
10038
10069
(
2016
).
11.
A.
Szczęsna-Chrzan
,
M.
Marczewski
,
J.
Syzdek
,
M. K.
Kochaniec
,
M.
Smoliński
, and
M.
Marcinek
, “
Lithium polymer electrolytes for novel batteries application: The review perspective
,”
Appl. Phys. A
129
,
37
(
2023
).
12.
M. A.
Alkhadra
,
X.
Su
,
M. E.
Suss
,
H.
Tian
,
E. N.
Guyes
,
A. N.
Shocron
,
K. M.
Conforti
,
J. P.
De Souza
,
N.
Kim
,
M.
Tedesco
et al, “
Electrochemical methods for water purification, ion separations, and energy conversion
,”
Chem. Rev.
122
,
13547
13635
(
2022
).
13.
B. P.
Chaplin
, “
The prospect of electrochemical technologies advancing worldwide water treatment
,”
Acc. Chem. Res.
52
,
596
604
(
2019
).
14.
P.
Debye
,
Selected Works. Articles 1909–1965
(
Nauka
,
1987
) (in Russian).
15.
P.
Debye
and
E.
Hückel
, “
Theory of electrolytes-part II: Law of the limit of electrolytic conduction
,”
Phys. Z
24
,
305
(
1923
).
16.
P.
Debye
and
H.
Falkenhagen
, “
Dispersion of the conductivity and dielectric constants of strong electrolytes
,”
Phys. Z
29
,
401
426
(
1928
).
17.
L.
Onsager
, “
Report on a revision of the conductivity theory
,”
Trans. Faraday Soc.
23
,
341
349
(
1927
).
18.
L.
Onsager
, “
On the theory of electrolytes. II
,”
Phys. Z.
28
,
277
298
(
1927
).
19.
L.
Onsager
and
R. M.
Fuoss
, “
Irreversible processes in electrolytes. Diffusion, conductance and viscous flow in arbitrary mixtures of strong electrolytes
,”
J. Phys. Chem.
36
,
2689
2778
(
1932
).
20.
R. M.
Fuoss
, “
Review of the theory of electrolytic conductance
,”
J. Solution Chem.
7
,
771
782
(
1978
).
21.
O.
Bernard
,
M.
Jardat
,
B.
Rotenberg
, and
P.
Illien
, “
On analytical theories for conductivity and self-diffusion in concentrated electrolytes
,”
J. Chem. Phys.
159
,
164105
(
2023
).
22.
S.
Naseri Boroujeni
,
B.
Maribo-Mogensen
,
X.
Liang
, and
G. M.
Kontogeorgis
, “
New electrical conductivity model for electrolyte solutions based on the Debye–Hückel–Onsager theory
,”
J. Phys. Chem. B
127
,
9954
9975
(
2023
).
23.
S.
Naseri Boroujeni
,
B.
Maribo-Mogensen
,
X.
Liang
, and
G. M.
Kontogeorgis
, “
On the estimation of equivalent conductivity of electrolyte solutions: The effect of relative static permittivity and viscosity
,”
Fluid Phase Equilib.
567
,
113698
(
2023
).
24.
V.
Démery
and
D. S.
Dean
, “
The conductivity of strong electrolytes from stochastic density functional theory
,”
J. Stat. Mech.: Theory Exp.
2016
,
023106
.
25.
Y.
Avni
,
R. M.
Adar
,
D.
Andelman
, and
H.
Orland
, “
Conductivity of concentrated electrolytes
,”
Phys. Rev. Lett.
128
,
098002
(
2022
).
26.
Y.
Avni
,
D.
Andelman
, and
H.
Orland
, “
Conductance of concentrated electrolytes: Multivalency and the Wien effect
,”
J. Chem. Phys.
157
,
154502
(
2022
).
27.
O. I.
Vinogradova
and
E. F.
Silkina
, “
Electrophoresis of ions and electrolyte conductivity: From bulk to nanochannels
,”
J. Chem. Phys.
159
,
174707
(
2023
).
28.
O. I.
Vinogradova
and
E. F.
Silkina
, “
Conductivity of concentrated salt solutions
,” arXiv:2312.02624 (
2023
).
29.
D.
Fraenkel
, “
An improved theory of the electric conductance of ionic solutions based on the concept of the ion-atmosphere’s smaller-ion shell
,”
Phys. Chem. Chem. Phys.
20
,
29896
29909
(
2018
).
30.
D.
Fraenkel
, “
Simplified electrostatic model for the thermodynamic excess potentials of binary strong electrolyte solutions with size-dissimilar ions
,”
Mol. Phys.
108
,
1435
1466
(
2010
).
31.
D.
Henry
, “
The cataphoresis of suspended particles. Part I—The equation of cataphoresis
,”
Proc. R. Soc. A
133
,
106
129
(
1931
).
32.
S.
Maduar
,
A.
Belyaev
,
V.
Lobaskin
, and
O.
Vinogradova
, “
Electrohydrodynamics near hydrophobic surfaces
,”
Phys. Rev. Lett.
114
,
118301
(
2015
).
33.
W.-D.
Kraeft
,
D.
Kremp
,
W.
Ebeling
, and
G.
Röpke
,
Quantum Statistics of Charged Particle Systems
(
Springer
,
1986
).
34.
R.
Dogonadze
and
A.
Kornyshev
, “
Polar solvent structure in the theory of ionic solvation
,”
J. Chem. Soc., Faraday Trans. 2
70
,
1121
1132
(
1974
).
35.
A. A.
Kornyshev
and
G.
Sutmann
, “
The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study
,”
J. Chem. Phys.
104
,
1524
1544
(
1996
).
36.
A.
Rubashkin
,
M.
Vorotyntsev
,
E.
Antipov
, and
A. S.
Aldoshin
, “
Nonlocal electrostatic theory of ion solvation: A combination of the overscreening effect in the dielectric response of the medium with a smeared ion charge distribution
,”
Dokl. Phys. Chem.
464
,
198
201
(
2015
).
37.
J. P.
de Souza
,
Z. A.
Goodwin
,
M.
McEldrew
,
A. A.
Kornyshev
, and
M. Z.
Bazant
, “
Interfacial layering in the electric double layer of ionic liquids
,”
Phys. Rev. Lett.
125
,
116001
(
2020
).
38.
L.
Lue
, “
A variational field theory for solutions of charged, rigid particles
,”
Fluid Phase Equilib.
241
,
236
247
(
2006
).
39.
Z.-G.
Wang
, “
Fluctuation in electrolyte solutions: The self energy
,”
Phys. Rev. E
81
,
021501
(
2010
).
40.
Y. A.
Budkov
, “
Statistical field theory of ion–molecular solutions
,”
Phys. Chem. Chem. Phys.
22
,
14756
14772
(
2020
).
41.
Y. A.
Budkov
and
P. E.
Brandyshev
, “
Variational field theory of macroscopic forces in Coulomb fluids
,”
J. Chem. Phys.
159
,
174103
(
2023
).
42.
K. V.
Nikiforova
,
A. A.
Vanin
,
P.
Korchak
,
E. A.
Safonova
, and
A. I.
Victorov
, “
Modeling osmotic coefficients in aqueous solutions of 1-alkyl-3-methylimidazolim halides: A theory that reflects the electrical structure of ions and ePC-SAFT
,”
J. Chem. Eng. Data
69
,
3497
(
2024
).
43.
Y.
Nakayama
and
D.
Andelman
, “
Differential capacitance of the electric double layer: The interplay between ion finite size and dielectric decrement
,”
J. Chem. Phys.
142
,
044706
(
2015
).
44.
D.
Ben-Yaakov
,
D.
Andelman
, and
R.
Podgornik
, “
Dielectric decrement as a source of ion-specific effects
,”
J. Chem. Phys.
134
,
074705
(
2011
).
45.
D.
Mazur
,
P.
Brandyshev
,
S.
Doronin
, and
Y. A.
Budkov
, “
Understanding the electric double layer at the electrode–electrolyte interface: Part I—No ion specific adsorption
,”
ChemPhysChem
e202400650
(2024).
46.
L. P.
Pitaevskii
and
E.
Lifshitz
,
Physical Kinetics
(
Butterworth-Heinemann
,
2012
), Vol.
10
.
47.
E.
Pitts
, “
An extension of the theory of the conductivity and viscosity of electrolyte solutions
,”
Proc. R. Soc. A
217
,
43
70
(
1953
).
48.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics
(
Elsevier
,
2013
), Vol.
6
.
49.
D.
Kondepudi
and
I.
Prigogine
,
Modern Thermodynamics: From Heat Engines to Dissipative Structures
(
John Wiley & Sons
,
2014
).
50.
Y. A.
Budkov
and
A. L.
Kolesnikov
, “
Modified Poisson–Boltzmann equations and macroscopic forces in inhomogeneous ionic fluids
,”
J. Stat. Mech.: Theory Exp.
2022
,
053205
.
51.
A.
Maggs
and
R.
Podgornik
, “
General theory of asymmetric steric interactions in electrostatic double layers
,”
Soft Matter
12
,
1219
1229
(
2016
).
52.
R.
Roth
, “
Fundamental measure theory for hard-sphere mixtures: A review
,”
J. Phys.: Condens. Matter
22
,
063102
(
2010
).
53.
Z. A.
Goodwin
,
G.
Feng
, and
A. A.
Kornyshev
, “
Mean-field theory of electrical double layer in ionic liquids with account of short-range correlations
,”
Electrochim. Acta
225
,
190
197
(
2017
).
54.
Y. A.
Budkov
,
A. L.
Kolesnikov
,
Z. A.
Goodwin
,
M. G.
Kiselev
, and
A. A.
Kornyshev
, “
Theory of electrosorption of water from ionic liquids
,”
Electrochim. Acta
284
,
346
354
(
2018
).
55.
A.
Ohrn
,
J. M.
Hermida-Ramon
, and
G.
Karlstrom
, “
Method for slater-type density fitting for intermolecular electrostatic interactions with charge overlap. I. The model
,”
J. Chem. Theory Comput.
12
,
2298
2311
(
2016
).
56.
Z.
Posel
,
Z.
Limpouchova
,
K.
Sindelka
,
M.
Lisal
, and
K.
Prochazka
, “
Dissipative particle dynamics study of the pH-dependent behavior of poly(2-vinylpyridine)-block-poly(ethylene oxide) diblock copolymer in aqueous buffers
,”
Macromolecules
47
,
2503
2514
(
2014
).
57.
R.
Mao
,
M.-T.
Lee
,
A.
Vishnyakov
, and
A. V.
Neimark
, “
Modeling aggregation of ionic surfactants using a smeared charge approximation in dissipative particle dynamics simulations
,”
J. Phys. Chem. B
119
,
11673
11683
(
2015
).
58.
R. L.
Hendrikse
,
C.
Amador
, and
M. R.
Wilson
, “
DPD simulations of anionic surfactant micelles: A critical role for polarisable water models
,”
Soft Matter
20
,
7521
(
2024
).
59.
H.
Zhao
and
S.
Zhai
, “
The influence of dielectric decrement on electrokinetics
,”
J. Fluid Mech.
724
,
69
94
(
2013
).
60.
R.
Holze
,
Electrochemistry: Electrical Conductivities and Equilibria of Electrochemical Systems
(
Springer
,
2016
).
61.
M.
Laliberte
and
W. E.
Cooper
, “
Model for calculating the density of aqueous electrolyte solutions
,”
J. Chem. Eng. Data
49
,
1141
1151
(
2004
).
62.
M.
Laliberté
, “
Model for calculating the viscosity of aqueous solutions
,”
J. Chem. Eng. Data
52
,
321
335
(
2007
).
63.
T.
Isono
, “
Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkaline-earth chlorides, lanthanum chloride, sodium chloride, sodium nitrate, sodium bromide, potassium nitrate, potassium bromide, and cadmium nitrate
,”
J. Chem. Eng. Data
29
,
45
52
(
1984
).
64.
D.
Out
and
J.
Los
, “
Viscosity of aqueous solutions of univalent electrolytes from 5 to 95 °C
,”
J. Solution Chem.
9
,
19
35
(
1980
).
65.
W. M.
Haynes
,
CRC Handbook of Chemistry and Physics
(
CRC Press
,
2016
).
66.
J.
Barthel
,
Electrolyte Data Collection: Viscosity of Aqueous Solutions; [1], AgClO4-Cl4O16Th
(
DECHEMA
,
1998
).
67.
M.
Postler
, “
Conductance of concentrated aqueous solutions of electrolytes. I. Strong uni-univalent electrolytes
,”
Collect. Czech. Chem. Commun.
35
,
535
544
(
1970
).
68.
M.
Postler
, “
Conductance of concentrated aqueous solutions of electrolytes. II. Strong polyvalent electrolytes
,”
Collect. Czech. Chem. Commun.
35
,
2244
2249
(
1970
).
69.
R. B.
McCleskey
, “
Electrical conductivity of electrolytes found in natural waters from (5 to 90) °C
,”
J. Chem. Eng. Data
56
,
317
327
(
2011
).
70.
E.
Nightingale
, Jr.
, “
Phenomenological theory of ion solvation. Effective radii of hydrated ions
,”
J. Phys. Chem.
63
,
1381
1387
(
1959
).
71.
J.
Hasted
,
D.
Ritson
, and
C.
Collie
, “
Dielectric properties of aqueous ionic solutions. Parts I and II
,”
J. Chem. Phys.
16
,
1
21
(
1948
).
72.
F. E.
Harris
and
C. T.
O’Konski
, “
Dielectric properties of aqueous ionic solutions at microwave frequencies
,”
J. Phys. Chem.
61
,
310
319
(
1957
).
73.
C.
Malmberg
and
A.
Maryott
, “
Dielectric constant of water from 0 °C to 100 °C
,”
J. Res. Natl. Bur. Stand.
56
,
1
8
(
1956
).
74.
T.
Boublik
,
C.
Vega
, and
M.
Diaz-Pena
, “
Equation of state of chain molecules
,”
J. Chem. Phys.
93
,
730
736
(
1990
).
75.
Y. D.
Gordievskaya
,
Y. A.
Budkov
, and
E. Y.
Kramarenko
, “
An interplay of electrostatic and excluded volume interactions in the conformational behavior of a dipolar chain: Theory and computer simulations
,”
Soft Matter
14
,
3232
3235
(
2018
).
76.
T.
Boublík
, “
Statistical thermodynamics of convex molecule fluids
,”
Mol. Phys.
27
,
1415
1427
(
1974
).
77.
J. T. G.
Overbeek
, “
Theorie der elektrophorese
,”
Kolloid-Beih.
54
,
287
(
1943
).
78.
Y.
Avni
,
R. M.
Adar
, and
D.
Andelman
, “
Charge oscillations in ionic liquids: A microscopic cluster model
,”
Phys. Rev. E
101
,
010601
(
2020
).
79.
G.
Feng
,
M.
Chen
,
S.
Bi
,
Z. A.
Goodwin
,
E. B.
Postnikov
,
N.
Brilliantov
,
M.
Urbakh
, and
A. A.
Kornyshev
, “
Free and bound states of ions in ionic liquids, conductivity, and underscreening paradox
,”
Phys. Rev. X
9
,
021024
(
2019
).
80.
Z. A.
Goodwin
and
A. A.
Kornyshev
, “
Cracking ion pairs in the electrical double layer of ionic liquids
,”
Electrochim. Acta
434
,
141163
(
2022
).
81.
M.
Bešter-Rogač
,
M. V.
Fedotova
,
S. E.
Kruchinin
, and
M.
Klähn
, “
Mobility and association of ions in aqueous solutions: The case of imidazolium based ionic liquids
,”
Phys. Chem. Chem. Phys.
18
,
28594
28605
(
2016
).
82.
M.
Bešter-Rogač
,
A.
Stoppa
,
J.
Hunger
,
G.
Hefter
, and
R.
Buchner
, “
Association of ionic liquids in solution: A combined dielectric and conductivity study of [bmim] [Cl] in water and in acetonitrile
,”
Phys. Chem. Chem. Phys.
13
,
17588
17598
(
2011
).
You do not currently have access to this content.