The Markov chain Monte Carlo (MCMC) method is widely used in various fields as a powerful numerical integration technique for systems with many degrees of freedom. In MCMC methods, probabilistic state transitions can be considered as a random walk in state space, and random walks allow for sampling from complex distributions. However, paradoxically, it is necessary to carefully suppress the randomness of the random walk to improve computational efficiency. By breaking detailed balance, we can create a probability flow in the state space and perform more efficient sampling along this flow. Motivated by this idea, practical and efficient nonreversible MCMC methods have been developed over the past ten years. In particular, the lifting technique, which introduces probability flows in an extended state space, has been applied to various systems and has proven more efficient than conventional reversible updates. We review and discuss several practical approaches to implementing nonreversible MCMC methods, including the shift method in the cumulative distribution and the directed-worm algorithm.

1.
M.
Newman
and
G.
Barkema
,
Monte Carlo Methods in Statistical Physics
(
Oxford University Press
,
1999
).
2.
D. P.
Landau
and
K.
Binder
,
A Guide to Monte Carlo Simulations in Statistical Physics
, 4th ed. (
Cambridge University Press
,
Cambridge
,
2014
).
3.
Y.
Sakai
and
K.
Hukushima
,
J. Phys. Soc. Jpn.
82
,
064003
(
2013
).
4.
F.
Faizi
,
G.
Deligiannidis
, and
E.
Rosta
,
J. Chem. Theory Comput.
16
,
2124
(
2020
).
5.
Y.
Nishikawa
,
M.
Michel
,
W.
Krauth
, and
K.
Hukushima
,
Phys. Rev. E
92
,
063306
(
2015
).
6.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
8.
S.
Geman
and
D.
Geman
,
IEEE Trans. Pattern Anal. Mach. Intell.
6
,
721
(
1984
).
9.
C. P.
Robert
and
G.
Casella
,
Monte Carlo Statistical Methods
, 2nd ed. (
Springer
,
New York
,
2004
).
10.

In the present paper, we assume irreducibility of the Markov chain, which ensures, under global balance, convergence of the running average to the expectation value with respect to the target.

11.
C.-R.
Hwang
,
S.-Y.
Hwang-Ma
, and
S.-J.
Sheu
,
Ann. Appl. Probab.
15
,
1433
(
2005
).
12.
A.
Ichiki
and
M.
Ohzeki
,
Phys. Rev. E
88
,
020101
(
2013
).
13.
A. B.
Duncan
,
T.
Lelièvre
, and
G. A.
Pavliotis
,
J. Stat. Phys.
163
,
457
(
2016
).
14.
A.
Sokal
,
Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms
(
Springer
,
New York
,
1997
).
15.
H.
Suwa
and
S.
Todo
,
Phys. Rev. Lett.
105
,
120603
(
2010
).
16.
S.
Todo
and
H.
Suwa
,
J. Phys.: Conf. Ser.
473
,
012013
(
2013
).
19.
R. M.
Neal
,
Learning in Graphical Models
, edited by
M. I.
Jordan
(
Springer Netherlands
,
Dordrecht
,
1998
), pp.
205
228
.
20.
H.
Suwa
,
Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin-Phonon Complex Systems
,
Springer Theses
(
Springer
,
Japan, Tokyo
,
2014
).
21.
H.
Suwa
and
S.
Todo
,
Chapter 23. Geometric Allocation Approach for the Transition Kernel of a Markov Chain
(
De Gruyter
,
2012
) pp.
213
222
.
22.
J. S.
Liu
,
Monte Carlo Strategies in Scientific Computing
,
Springer Series in Statistics
(
Springer
,
New York, NY
,
2004
).
23.
H.
Tjelmeland
, “
Using all Metropolis–Hastings proposals to estimate mean values
” (unpublished); available at https://api.semanticscholar.org/CorpusID:18970229.
24.
I.
Murray
, “
Advances in Markov chain Monte Carlo methods
,” Ph.D. thesis,
University College London
,
2007
.
25.
S.
Duane
,
A. D.
Kennedy
,
B. J.
Pendleton
, and
D.
Roweth
,
Phys. Lett. B
195
,
216
(
1987
).
26.
P.
Diaconis
,
S.
Holmes
, and
R. M.
Neal
,
Ann. Appl. Probab.
10
,
726
(
2000
).
27.
K. S.
Turitsyn
,
M.
Chertkov
, and
M.
Vucelja
,
Physica D
240
,
410
(
2011
).
28.
F.
Chen
,
L.
Lovász
, and
I.
Pak
, in
Proceedings of the 31st Annual ACM Symposium on Theory of Computing, STOC ’99
(
Association for Computing Machinery
,
New York, NY
,
1999
), pp.
275
281
.
29.
30.
H. C. M.
Fernandes
and
M.
Weigel
, “
Non-reversible Monte Carlo simulations of spin models
,”
Comput. Phys. Commun.
182
,
1856
(
2011
).
31.
E. P.
Bernard
,
W.
Krauth
, and
D. B.
Wilson
,
Phys. Rev. E
80
,
056704
(
2009
).
32.
M.
Michel
,
S. C.
Kapfer
, and
W.
Krauth
,
J. Chem. Phys.
140
,
054116
(
2014
).
34.
M.
Engel
,
J. A.
Anderson
,
S. C.
Glotzer
,
M.
Isobe
,
E. P.
Bernard
, and
W.
Krauth
,
Phys. Rev. E
87
,
042134
(
2013
).
35.
M.
Isobe
and
W.
Krauth
,
J. Chem. Phys.
143
,
084509
(
2015
).
36.
J.
Harland
,
M.
Michel
,
T. A.
Kampmann
, and
J.
Kierfeld
,
Europhys. Lett.
117
,
30001
(
2017
).
37.
S. C.
Kapfer
and
W.
Krauth
,
Phys. Rev. E
94
,
031302
(
2016
).
38.
M.
Michel
,
J.
Mayer
, and
W.
Krauth
,
Europhys. Lett.
112
,
20003
(
2015
).
39.
N. V.
Prokof’ev
,
B. V.
Svistunov
, and
I. S.
Tupitsyn
,
J. Exp. Theor. Phys.
87
,
310
(
1998
).
40.
M.
Boninsegni
,
N. V.
Prokof’ev
, and
B. V.
Svistunov
,
Phys. Rev. E
74
,
036701
(
2006
).
41.
O. F.
Syljuåsen
and
A. W.
Sandvik
,
Phys. Rev. E
66
,
046701
(
2002
).
42.
N.
Prokof’ev
and
B.
Svistunov
,
Phys. Rev. Lett.
87
,
160601
(
2001
).
44.
Q.
Liu
,
Y.
Deng
, and
T. M.
Garoni
,
Nucl. Phys. B
846
,
283
(
2011
).
45.
D. H.
Adams
and
S.
Chandrasekharan
,
Nucl. Phys. B
662
,
220
(
2003
).
48.
B. L.
van der Waerden
,
Z. Phys.
118
,
473
(
1941
).
50.
C.-W.
Liu
,
A.
Polkovnikov
, and
A. W.
Sandvik
,
Phys. Rev. B
89
,
054307
(
2014
).
51.
B.
Li
,
S.
Todo
,
A. C.
Maggs
, and
W.
Krauth
,
Comput. Phys. Commun.
261
,
107702
(
2021
).
52.
E. M.
Elçi
,
J.
Grimm
,
L.
Ding
,
A.
Nasrawi
,
T. M.
Garoni
, and
Y.
Deng
,
Phys. Rev. E
97
,
042126
(
2018
).
53.
Y.
Sakai
and
K.
Hukushima
,
J. Phys. Soc. Jpn.
85
,
104002
(
2016
).
54.
S.
Syed
,
A.
Bouchard-Côté
,
G.
Deligiannidis
, and
A.
Doucet
,
J. R. Stat. Soc. Ser. B: Stat. Methodol.
84
,
321
(
2022
).
55.
S. G.
Itoh
and
H.
Okumura
,
J. Chem. Theory Comput.
9
,
570
(
2013
).
57.
M.
Ohzeki
and
A.
Ichiki
,
Phys. Rev. E
92
,
012105
(
2015
).
58.
F.
Coghi
,
R.
Chetrite
, and
H.
Touchette
,
Phys. Rev. E
103
,
062142
(
2021
).
59.
A.
Abdulle
,
G. A.
Pavliotis
, and
G.
Vilmart
,
C. R. Math.
357
,
349
(
2019
).
60.
A. Q.
Wang
,
M.
Pollock
,
G. O.
Roberts
, and
D.
Steinsaltz
,
Ann. Appl. Probab.
31
,
703
(
2021
).
You do not currently have access to this content.