In this Communication, we demonstrate that a deep artificial neural network based on a transformer architecture with self-attention layers can predict the long-time population dynamics of a quantum system coupled to a dissipative environment provided that the short-time population dynamics of the system is known. The transformer neural network model developed in this work predicts the long-time dynamics of spin-boson model efficiently and very accurately across different regimes, from weak system–bath coupling to strong coupling non-Markovian regimes. Our model is more accurate than classical forecasting models, such as recurrent neural networks, and is comparable to the state-of-the-art models for simulating the dynamics of quantum dissipative systems based on kernel ridge regression.

1.
U.
Weiss
,
Quantum Dissipative Systems
(
World Scientific
,
2012
).
2.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
Oxford
,
2002
).
3.
Y.
Tanimura
and
R.
Kubo
, “
Two-time correlation functions of a system coupled to a heat bath with a Gaussian-Markoffian interaction
,”
J. Phys. Soc. Jpn.
58
,
1199
1206
(
1989
).
4.
Y.
Tanimura
, “
Numerically ‘exact’ approach to open quantum dynamics: The hierarchical equations of motion (HEOM)
,”
J. Chem. Phys.
153
,
020901
(
2020
).
5.
H.
Wang
and
M.
Thoss
, “
Multilayer formulation of the multiconfiguration time-dependent Hartree theory
,”
J. Chem. Phys.
119
,
1289
1299
(
2003
).
6.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
, “
The multi-configurational time-dependent Hartree approach
,”
Chem. Phys. Lett.
165
,
73
78
(
1990
).
7.
S.
Kundu
and
N.
Makri
, “
PathSum: A C++ and Fortran suite of fully quantum mechanical real-time path integral methods for (multi-)system + bath dynamics
,”
J. Chem. Phys.
158
,
224801
(
2023
).
8.
D. E.
Makarov
and
N.
Makri
, “
Path integrals for dissipative systems by tensor multiplication. Condensed phase quantum dynamics for arbitrarily long time
,”
Chem. Phys. Lett.
221
,
482
491
(
1994
).
9.
B.
Luo
,
J.
Ye
,
C.
Guan
, and
Y.
Zhao
, “
Validity of time-dependent trial states for the Holstein polaron
,”
Phys. Chem. Chem. Phys.
12
,
15073
15084
(
2010
).
10.
J.
Ren
,
Z.
Shuai
, and
G.
Kin-Lic Chan
, “
Time-dependent density matrix renormalization group algorithms for nearly exact absorption and fluorescence spectra of molecular aggregates at both zero and finite temperature
,”
J. Chem. Theory Comput.
14
,
5027
5039
(
2018
).
11.
S. M.
Greene
and
V. S.
Batista
, “
Tensor-train split-operator Fourier transform (TT-soft) method: Multidimensional nonadiabatic quantum dynamics
,”
J. Chem. Theory Comput.
13
,
4034
4042
(
2017
).
12.
Y.-A.
Yan
and
J.
Shao
, “
Stochastic description of quantum Brownian dynamics
,”
Front. Phys.
11
,
110309
(
2016
).
13.
C.-Y.
Hsieh
and
J.
Cao
, “
A unified stochastic formulation of dissipative quantum dynamics. I. Generalized hierarchical equations
,”
J. Chem. Phys.
148
,
014103
(
2018
).
14.
L.
Han
,
A.
Ullah
,
Y.-A.
Yan
,
X.
Zheng
,
Y.
Yan
, and
V.
Chernyak
, “
Stochastic equation of motion approach to fermionic dissipative dynamics. I. Formalism
,”
J. Chem. Phys.
152
,
204105
(
2020
).
15.
A.
Ullah
,
L.
Han
,
Y.-A.
Yan
,
X.
Zheng
,
Y.
Yan
, and
V.
Chernyak
, “
Stochastic equation of motion approach to fermionic dissipative dynamics. II. Numerical implementation
,”
J. Chem. Phys.
152
,
204106
(
2020
).
16.
D.
Brian
and
X.
Sun
, “
Generalized quantum master equation: A tutorial review and recent advances
,”
Chin. J. Chem. Phys.
34
,
497
524
(
2021
).
17.
S.
Nakajima
, “
On quantum theory of transport phenomena: Steady diffusion
,”
Prog. Theor. Phys.
20
,
948
959
(
1958
).
18.
R.
Zwanzig
, “
Ensemble method in the theory of irreversibility
,”
J. Chem. Phys.
33
,
1338
1341
(
1960
).
19.
Q.
Shi
and
E.
Geva
, “
A new approach to calculating the memory kernel of the generalized quantum master equation for an arbitrary system–bath coupling
,”
J. Chem. Phys.
119
,
12063
12076
(
2003
).
20.
E.
Mulvihill
and
E.
Geva
, “
A road map to various pathways for calculating the memory kernel of the generalized quantum master equation
,”
J. Phys. Chem. B
125
,
9834
9852
(
2021
).
21.
A.
Kelly
and
T. E.
Markland
, “
Efficient and accurate surface hopping for long time nonadiabatic quantum dynamics
,”
J. Chem. Phys.
139
,
014104
(
2013
).
22.
J.
Cerrillo
and
J.
Cao
, “
Non-Markovian dynamical maps: Numerical processing of open quantum trajectories
,”
Phys. Rev. Lett.
112
,
110401
(
2014
).
23.
A. A.
Kananenka
,
C.-Y.
Hsieh
,
J.
Cao
, and
E.
Geva
, “
Accurate long-time mixed quantum-classical Liouville dynamics via the transfer tensor method
,”
J. Phys. Chem. Lett.
7
,
4809
4814
(
2016
).
24.
M.
Buser
,
J.
Cerrillo
,
G.
Schaller
, and
J.
Cao
, “
Initial system-environment correlations via the transfer-tensor method
,”
Phys. Rev. A
96
,
062122
(
2017
).
25.
A.
Gelzinis
,
E.
Rybakovas
, and
L.
Valkunas
, “
Applicability of transfer tensor method for open quantum system dynamics
,”
J. Chem. Phys.
147
,
234108
(
2017
).
26.
Y.-Q.
Chen
,
K.-L.
Ma
,
Y.-C.
Zheng
,
J.
Allcock
,
S.
Zhang
, and
C.-Y.
Hsieh
, “
Non-Markovian noise characterization with the transfer tensor method
,”
Phys. Rev. Appl.
13
,
034045
(
2020
).
27.
L. E.
Herrera Rodríguez
and
A. A.
Kananenka
, “
Convolutional neural networks for long time dissipative quantum dynamics
,”
J. Phys. Chem. Lett.
12
,
2476
2483
(
2021
).
28.
A.
Ullah
and
P. O.
Dral
, “
Speeding up quantum dissipative dynamics of open systems with kernel methods
,”
New J. Phys.
23
,
113019
(
2021
).
29.
A.
Ullah
and
P. O.
Dral
, “
Predicting the future of excitation energy transfer in light-harvesting complex with artificial intelligence-based quantum dynamics
,”
Nat. Commun.
13
,
1930
(
2022
).
30.
A.
Ullah
and
P. O.
Dral
, “
One-shot trajectory learning of open quantum systems dynamics
,”
J. Phys. Chem. Lett.
13
,
6037
6041
(
2022
).
31.
A.
Ullah
,
L. E.
Herrera Rodríguez
,
P. O.
Dral
, and
A. A.
Kananenka
, “
QD3SET-1: A database with quantum dissipative dynamics datasets
,”
Front. Phys.
11
,
1223973
(
2023
).
32.
A.
Ullah
and
P. O.
Dral
, “
MLQD: A package for machine learning-based quantum dissipative dynamics
,”
Comput. Phys. Commun.
294
,
108940
(
2024
).
33.
K.
Lin
,
J.
Peng
,
F. L.
Gu
, and
Z.
Lan
, “
Simulation of open quantum dynamics with bootstrap-based long short-term memory recurrent neural network
,”
J. Phys. Chem. Lett.
12
,
10225
10234
(
2021
).
34.
D.
Wu
,
Z.
Hu
,
J.
Li
, and
X.
Sun
, “
Forecasting nonadiabatic dynamics using hybrid convolutional neural network/long short-term memory network
,”
J. Chem. Phys.
155
,
224104
(
2021
).
35.
A. V.
Akimov
, “
Extending the time scales of nonadiabatic molecular dynamics via machine learning in the time domain
,”
J. Phys. Chem. Lett.
12
,
12119
12128
(
2021
).
36.
L.
Zhang
,
S. V.
Pios
,
M.
Martyka
,
F.
Ge
,
Y.-F.
Hou
,
Y.
Chen
,
L.
Chen
,
J.
Jankowska
,
M.
Barbatti
, and
P. O.
Dral
, “
MLatom software ecosystem for surface hopping dynamics in Python with quantum mechanical and machine learning methods
,”
J. Chem. Theory Comput.
20
,
5043
5057
(
2024
).
37.
K.
Lin
,
J.
Peng
,
C.
Xu
,
F. L.
Gu
, and
Z.
Lan
, “
Automatic evolution of machine-learning-based quantum dynamics with uncertainty analysis
,”
J. Chem. Theory Comput.
18
,
5837
5855
(
2022
).
38.
D.
Luo
,
Z.
Chen
,
J.
Carrasquilla
, and
B. K.
Clark
, “
Autoregressive neural network for simulating open quantum systems via a probabilistic formulation
,”
Phys. Rev. Lett.
128
,
090501
(
2022
).
39.
L. E. H.
Rodríguez
,
A.
Ullah
,
K. J. R.
Espinosa
,
P. O.
Dral
, and
A. A.
Kananenka
, “
A comparative study of different machine learning methods for dissipative quantum dynamics
,”
Mach. Learn.: Sci. Technol.
3
,
045016
(
2022
).
40.
A.
Ullah
,
Y.
Huang
,
M.
Yang
, and
P. O.
Dral
, “
Physics-informed neural networks and beyond: Enforcing physical constraints in quantum dissipative dynamics
,”
Digital Discovery
3
,
2052
(
2024
).
41.
A.
Vaswani
,
N.
Shazeer
,
N.
Parmar
,
J.
Uszkoreit
,
L.
Jones
,
A. N.
Gomez
,
Ł.
Kaiser
, and
I.
Polosukhin
, “
Attention is all you need
,” in
Advances in Neural Information Processing Systems
(
Curran Associates, Inc.
,
2017
), Vol.
30
.
42.
A.
Dosovitskiy
,
L.
Beyer
,
A.
Kolesnikov
,
D.
Weissenborn
,
X.
Zhai
,
T.
Unterthiner
,
M.
Dehghani
,
M.
Minderer
,
G.
Heigold
,
S.
Gelly
et al, “
An image is worth 16 × 16 words: Transformers for image recognition at scale
,” arXiv:2010.11929 (
2020
).
43.
A.
Radford
,
J. W.
Kim
,
T.
Xu
,
G.
Brockman
,
C.
McLeavey
, and
I.
Sutskever
, “
Robust speech recognition via large-scale weak supervision
,” in
International Conference on Machine Learning
(
PMLR
,
2023
), pp.
28492
28518
.
44.
T.
Wolf
,
L.
Debut
,
V.
Sanh
,
J.
Chaumond
,
C.
Delangue
,
A.
Moi
,
P.
Cistac
,
T.
Rault
,
R.
Louf
,
M.
Funtowicz
et al, “
Transformers: State-of-the-art natural language processing
,” in
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
(
Association for Computational Linguistics
,
2020
), pp.
38
45
.
45.
C.
Donoso-Oliva
,
I.
Becker
,
P.
Protopapas
,
G.
Cabrera-Vives
,
M.
Vishnu
, and
H.
Vardhan
, “
ASTROMER: A transformer-based embedding for the representation of light curves
,”
Astron. Astrophys.
670
,
A54
(
2023
).
46.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P.
Fisher
,
A.
Garg
, and
W.
Zwerger
, “
Dynamics of the dissipative two-state system
,”
Rev. Mod. Phys.
59
,
1
(
1987
).
47.
Y.
Makhlin
,
G.
Schön
, and
A.
Shnirman
, “
Quantum-state engineering with Josephson-junction devices
,”
Rev. Mod. Phys.
73
,
357
(
2001
).
48.
A.
Winter
,
H.
Rieger
,
M.
Vojta
, and
R.
Bulla
, “
Quantum phase transition in the sub-ohmic spin-boson model: Quantum Monte Carlo study with a continuous imaginary time cluster algorithm
,”
Phys. Rev. Lett.
102
,
030601
(
2009
).
49.
A.
Alvermann
and
H.
Fehske
, “
Sparse polynomial space approach to dissipative quantum systems: Application to the sub-ohmic spin-boson model
,”
Phys. Rev. Lett.
102
,
150601
(
2009
).
50.
A.
Garg
,
J. N.
Onuchic
, and
V.
Ambegaokar
, “
Effect of friction on electron transfer in biomolecules
,”
J. Chem. Phys.
83
,
4491
4503
(
1985
).
51.
H.
Wang
,
X.
Song
,
D.
Chandler
, and
W. H.
Miller
, “
Semiclassical study of electronically nonadiabatic dynamics in the condensed-phase: Spin-boson problem with Debye spectral density
,”
J. Chem. Phys.
110
,
4828
4840
(
1999
).
52.
Z.
Niu
,
G.
Zhong
, and
H.
Yu
, “
A review on the attention mechanism of deep learning
,”
Neurocomputing
452
,
48
62
(
2021
).
53.
M.
Corbetta
and
G. L.
Shulman
, “
Control of goal-directed and stimulus-driven attention in the brain
,”
Nat. Rev. Neurosci.
3
,
201
215
(
2002
).
54.
D.
Bahdanau
,
K.
Cho
, and
Y.
Bengio
, “
Neural machine translation by jointly learning to align and translate
,” arXiv:1409.0473 (
2014
).
55.
M. M.
Aliabadi
,
H.
Emami
,
M.
Dong
, and
Y.
Huang
, “
Attention-based recurrent neural network for multistep-ahead prediction of process performance
,”
Comput. Chem. Eng.
140
,
106931
(
2020
).
56.
D.
Moreno-Cartagena
,
G.
Cabrera-Vives
,
P.
Protopapas
,
C.
Donoso-Oliva
,
M.
Pérez-Carrasco
, and
M.
Cádiz-Leyton
, “
Positional encodings for light curve transformers: Playing with positions and attention
,” arXiv:2308.06404 (
2023
).
57.
J. R.
Johansson
,
P. D.
Nation
, and
F.
Nori
, “
QuTiP: An open-source Python framework for the dynamics of open quantum systems
,”
Comput. Phys. Commun.
183
,
1760
1772
(
2012
).
58.
F.
Chollet
et al,
Keras
,
2015
, https://github.com/fchollet/keras.
59.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
Y.
Jia
,
R.
Jozefowicz
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Mané
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
M.
Schuster
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Viégas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
,
TensorFlow: Large-scale machine learning on heterogeneous systems
,
2015
, http://tensorflow.org.
60.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
61.
T.
O’Malley
,
E.
Bursztein
,
J.
Long
,
F.
Chollet
,
H.
Jin
,
L.
Invernizzi
et al,
Kerastuner
,
2019
, https://github.com/keras-team/keras-tuner.
You do not currently have access to this content.