Biomolecules inhabit a crowded living cell that is packed with high concentrations of cosolutes and macromolecules that result in restricted, confined volumes for biomolecular dynamics. To understand the impact of crowding on the biomolecular structure, the combined effects of the cosolutes (such as urea) and confinement need to be accounted for. This study involves examining these effects on the collapse equilibria of three model 32-mer polymers, which are simplified models of hydrophobic, charge-neutral, and uncharged hydrophilic polymers, using molecular dynamics simulations. The introduction of confinement promotes the collapse of all three polymers. Interestingly, addition of urea weakens the collapse of the confined hydrophobic polymer, leading to non-additive effects, whereas for the hydrophilic polymers, urea enhances the confinement effects by enhancing polymer collapse (or decreasing the polymer unfolding), thereby exhibiting an additive effect. The unfavorable dehydration energy opposes collapse in the confined hydrophobic and charge-neutral polymers under the influence of urea. However, the collapse is driven mainly by the favorable change in polymer–solvent entropy. The confined hydrophilic polymer, which tends to unfold in bulk water, is seen to have reduced unfolding in the presence of urea due to the stabilizing of the collapsed state by urea via cohesive bridging interactions. Therefore, there is a complex balance of competing factors, such as polymer chemistry and polymer–water and polymer–cosolute interactions, beyond volume exclusion effects, which determine the collapse equilibria under confinement. The results have implications to understand the altering of the free energy landscape of proteins in the confined living cell environment.

1.
R. J.
Ellis
, “
Macromolecular crowding: Obvious but underappreciated
,”
Trends Biochem. Sci.
26
,
597
604
(
2001
).
2.
A. P.
Minton
and
J.
Wilf
, “
Effect of macromolecular crowding upon the structure and function of an enzyme: Glyceraldehyde-3-phosphate dehydrogenase
,”
Biochemistry
20
,
4821
4826
(
1981
).
3.
R. J.
Ellis
and
A. P.
Minton
, “
Cell biology: Join the crowd
,”
Nature
425
,
27
28
(
2003
).
4.
S.
Asakura
and
F.
Oosawa
, “
On interaction between two bodies immersed in a solution of macromolecules
,”
J. Chem. Phys.
22
,
1255
1256
(
1954
).
5.
S.
Asakura
and
F.
Oosawa
, “
Interaction between particles suspended in solutions of macromolecules
,”
J. Polym. Sci.
33
,
183
192
(
1958
).
6.
E. J.
Meijer
and
D.
Frenkel
, “
Colloids dispersed in polymer solutions. A computer simulation study
,”
J. Chem. Phys.
100
,
6873
6887
(
1994
).
7.
H.-X.
Zhou
,
G.
Rivas
, and
A. P.
Minton
, “
Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences
,”
Annu. Rev. Biophys.
37
,
375
397
(
2008
).
8.
K. A.
Sharp
, “
Analysis of the size dependence of macromolecular crowding shows that smaller is better
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
7990
7995
(
2015
).
9.
M. R.
Hilaire
,
R. M.
Abaskharon
, and
F.
Gai
, “
Biomolecular crowding arising from small molecules, molecular constraints, surface packing, and nano-confinement
,”
J. Phys. Chem. Lett.
6
,
2546
2553
(
2015
).
10.
M.
Senske
,
L.
Törk
,
B.
Born
,
M.
Havenith
,
C.
Herrmann
, and
S.
Ebbinghaus
, “
Protein stabilization by macromolecular crowding through enthalpy rather than entropy
,”
J. Am. Chem. Soc.
136
,
9036
9041
(
2014
).
11.
D.
Nayar
, “
Small crowder interactions can drive hydrophobic polymer collapse as well as unfolding
,”
Phys. Chem. Chem. Phys.
22
,
18091
18101
(
2020
).
12.
D.
Nayar
, “
Molecular crowders can induce collapse in hydrophilic polymers via soft attractive interactions
,”
J. Phys. Chem. B
127
,
6265
6276
(
2023
).
13.
M.
Sarkar
,
C.
Li
, and
G. J.
Pielak
, “
Soft interactions and crowding
,”
Biophys. Rev.
5
,
187
194
(
2013
).
14.
S. K.
Mukherjee
,
S.
Gautam
,
S.
Biswas
,
J.
Kundu
, and
P. K.
Chowdhury
, “
Do macromolecular crowding agents exert only an excluded volume effect? A protein solvation study
,”
J. Phys. Chem. B
119
,
14145
14156
(
2015
).
15.
S. L.
Speer
,
C. J.
Stewart
,
L.
Sapir
,
D.
Harries
, and
G. J.
Pielak
, “
Macromolecular crowding is more than hard-core repulsions
,”
Annu. Rev. Biophys.
51
,
267
300
(
2022
).
16.
C.
Alfano
,
Y.
Fichou
,
K.
Huber
,
M.
Weiss
,
E.
Spruijt
,
S.
Ebbinghaus
,
G.
De Luca
,
M. A.
Morando
,
V.
Vetri
,
P. A.
Temussi
, and
A.
Pastore
, “
Molecular crowding: The history and development of a scientific paradigm
,”
Chem. Rev.
124
,
3186
3219
(
2024
).
17.
H. S.
Chan
and
K. A.
Dill
, “
A simple model of chaperonin-mediated protein folding
,”
Proteins: Struct., Funct., Bioinf.
24
,
345
351
(
1996
).
18.
P.
Nissen
,
J.
Hansen
,
N.
Ban
,
P. B.
Moore
, and
T. A.
Steitz
, “
The structural basis of ribosome activity in peptide bond synthesis
,”
Science
289
,
920
930
(
2000
).
19.
T.
Misteli
, “
Beyond the sequence: Cellular organization of genome function
,”
Cell
128
,
787
800
(
2007
).
20.
D. R.
Canchi
and
A. E.
García
, “
Cosolvent effects on protein stability
,”
Annu. Rev. Phys. Chem.
64
,
273
293
(
2013
).
21.
S. S.
Cho
,
G.
Reddy
,
J. E.
Straub
, and
D.
Thirumalai
, “
Entropic stabilization of proteins by TMAO
,”
J. Phys. Chem. B
115
,
13401
13407
(
2011
).
22.
J. K.
Chung
,
M. C.
Thielges
, and
M. D.
Fayer
, “
Conformational dynamics and stability of HP35 studied with 2D IR vibrational echoes
,”
J. Am. Chem. Soc.
134
,
12118
12124
(
2012
).
23.
E. D.
Holmstrom
,
N. F.
Dupuis
, and
D. J.
Nesbitt
, “
Kinetic and thermodynamic origins of osmolyte-influenced nucleic acid folding
,”
J. Phys. Chem. B
119
,
3687
3696
(
2015
).
24.
R. M.
Culik
,
R. M.
Abaskharon
,
I. M.
Pazos
, and
F.
Gai
, “
Experimental validation of the role of trifluoroethanol as a nanocrowder
,”
J. Phys. Chem. B
118
,
11455
11461
(
2014
).
25.
A.
Maity
,
S.
Sarkar
,
L.
Theeyancheri
, and
R.
Chakrabarti
, “
Choline chloride as a nano-crowder protects HP-36 from urea-induced denaturation: Insights from solvent dynamics and protein-solvent interactions
,”
ChemPhysChem
21
,
552
567
(
2020
).
26.
N. F. A.
van der Vegt
and
D.
Nayar
, “
The hydrophobic effect and the role of cosolvents
,”
J. Phys. Chem. B
121
,
9986
9998
(
2017
).
27.
N. F. A.
van der Vegt
, “
Length-scale effects in hydrophobic polymer collapse transitions
,”
J. Phys. Chem. B
125
,
5191
5199
(
2021
).
28.
L. B.
Sagle
,
Y.
Zhang
,
V. A.
Litosh
,
X.
Chen
,
Y.
Cho
, and
P. S.
Cremer
, “
Investigating the hydrogen-bonding model of urea denaturation
,”
J. Am. Chem. Soc.
131
,
9304
9310
(
2009
).
29.
J.
Wang
,
B.
Liu
,
G.
Ru
,
J.
Bai
, and
J.
Feng
,
Macromolecules
49
,
234
243
(
2016
).
30.
D.
Nayar
,
A.
Folberth
, and
N. F. A.
van der Vegt
, “
Molecular origin of urea driven hydrophobic polymer collapse and unfolding depending on side chain chemistry
,”
Phys. Chem. Chem. Phys.
19
,
18156
18161
(
2017
).
31.
D.
Nayar
and
N. F. A.
van der Vegt
, “
Cosolvent effects on polymer hydration drive hydrophobic collapse
,”
J. Phys. Chem. B
122
,
3587
3595
(
2018
).
32.
J.
Mittal
and
R. B.
Best
, “
Thermodynamics and kinetics of protein folding under confinement
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
20233
20238
(
2008
).
33.
A.
Bhattacharya
,
R. B.
Best
, and
J.
Mittal
, “
Smoothing of the GB1 hairpin folding landscape by interfacial confinement
,”
Biophys. J.
103
,
596
600
(
2012
).
34.
J.
Tian
and
A. E.
Garcia
, “
Simulation studies of protein folding/unfolding equilibrium under polar and nonpolar confinement
,”
J. Am. Chem. Soc.
133
,
15157
15164
(
2011
).
35.
Z.
Cai
and
Y.
Zhang
, “
Hydrophobicity-driven unfolding of Trp-cage encapsulated between graphene sheets
,”
Colloids Surf., B
168
,
103
108
(
2018
).
36.
K. A.
Marino
and
P. G.
Bolhuis
, “
Confinement-induced states in the folding landscape of the Trp-cage miniprotein
,”
J. Phys. Chem. B
116
,
11872
11880
(
2012
).
37.
K.
Tripathi
,
G. I.
Menon
, and
S.
Vemparala
, “
Confined crowded polymers near attractive surfaces
,”
J. Chem. Phys.
151
,
244901
(
2019
).
38.
B.
Widom
, “
Some topics in the theory of fluids
,”
J. Chem. Phys.
39
,
2808
2812
(
1963
).
39.
R.
Zangi
,
R.
Zhou
, and
B. J.
Berne
, “
Urea’s action on hydrophobic interactions
,”
J. Am. Chem. Soc.
131
,
1535
1541
(
2009
).
40.
M.
Mukherjee
and
J.
Mondal
, “
Osmolyte-induced collapse of a charged macromolecule
,”
J. Phys. Chem. B
123
,
4636
4644
(
2019
).
41.
S.
Weerasinghe
and
P. E.
Smith
, “
A Kirkwood–Buff derived force field for mixtures of urea and water
,”
J. Phys. Chem. B
107
,
3891
3898
(
2003
).
42.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
43.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
, “
PLUMED 2: New feathers for an old bird
,”
Comput. Phys. Commun.
185
,
604
613
(
2014
).
44.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
, “
The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method
,”
J. Comput. Chem.
13
,
1011
1021
(
1992
).
45.
V.
Pierce
,
M.
Kang
,
M.
Aburi
,
S.
Weerasinghe
, and
P.
Smith
, “
Recent applications of Kirkwood-Buff theory to biological systems
,”
Cell Biochem. Biophys.
50
,
1
22
(
2008
).
46.
S.
Mukherjee
,
P.
Chowdhury
, and
F.
Gai
, “
Tuning the cooperativity of the helix–coil transition by aqueous reverse micelles
,”
J. Phys. Chem. B
110
,
11615
11619
(
2006
).
You do not currently have access to this content.