A pivotal aspect of molecular motors is their capability to generate load capacity from a single entity. However, few studies have directly characterized the load-resisting force of a single light-driven molecular motor. This research provides a simulation analysis of the load-resisting force for a highly efficient, second-generation molecular motor developed by Feringa et al. We investigate the M-to-P photoinduced nonadiabatic molecular dynamics of 9-(2,3-dihydro-2-methyl-1H-benz[e]inden-1-ylidene)-9H-fluorene utilizing Tully’s surface hopping method at the semi-empirical OM2/MRCI level under varying load-resisting forces. The findings indicate that the quantum yield remains relatively stable under forces up to 0.003 a.u., with the photoisomerization mechanism functioning typically. Beyond this threshold, the quantum yield declines, and an alternative photoisomerization mechanism emerges, characterized by an inversion of the central double bond’s twisting direction. The photoisomerization process stalls when the force attains a critical value of 0.012 a.u. Moreover, the average lifetime of the excited state oscillates around that of the unperturbed system. The quantum yield and mean lifetime of the S1 excited state in the absence of external force are recorded at 0.54 and 877.9 fs, respectively. In addition, we analyze a time-dependent fluorescence radiation spectrum, confirming the presence of a dark state and significant vibrations, as previously observed experimentally by Conyard et al.

1.
L.
Rivado-Casas
,
D.
Sampedro
,
P. J.
Campos
,
S.
Fusi
,
V.
Zanirato
, and
M.
Olivucci
, “
Fluorenylidene–pyrroline biomimetic light-driven molecular switches
,”
J. Org. Chem.
74
,
4666
4674
(
2009
).
2.
B. L.
Feringa
, “
In control of motion: From molecular switches to molecular motors
,”
Acc. Chem. Res.
34
,
504
513
(
2001
).
3.
A.
Singhania
,
S.
Kalita
,
P.
Chettri
, and
S.
Ghosh
, “
Accounts of applied molecular rotors and rotary motors: Recent advances
,”
Nanoscale Adv.
5
,
3177
3208
(
2023
).
4.
C. L. F.
van Beek
and
B.
Feringa
, “
Coupled rotary motion in molecular motors
,”
J. Am. Chem. Soc.
146
,
5634
5642
(
2024
).
5.
L.
Pfeifer
,
C. N.
Stindt
, and
B.
Feringa
, “
Coupled rotary and oscillatory motion in a second-generation molecular motor Pd complex
,”
J. Am. Chem. Soc.
145
,
822
829
(
2023
).
6.
T. R.
Kelly
,
R. A.
Silva
,
H.
De Silva
,
S.
Jasmin
, and
Y.
Zhao
, “
A rationally designed prototype of a molecular motor
,”
J. Am. Chem. Soc.
122
,
6935
6949
(
2000
).
7.
T. R.
Kelly
,
H.
De Silva
, and
R. A.
Silva
, “
Unidirectional rotary motion in a molecular system
,”
Nature
401
,
150
152
(
1999
).
8.
T. M.
Neubauer
,
T.
van Leeuwen
,
D.
Zhao
,
A. S.
Lubbe
,
J. C. M.
Kistemaker
, and
B. L.
Feringa
, “
Asymmetric synthesis of first generation molecular motors
,”
Org. Lett.
16
,
4220
4223
(
2014
).
9.
J.
Vicario
,
A.
Meetsma
, and
B. L.
Feringa
, “
Controlling the speed of rotation in molecular motors. Dramatic acceleration of the rotary motion by structural modification
,”
Chem. Commun.
47
,
5910
5912
(
2005
).
10.
N.
Komura
,
E. M.
Geertsema
,
M. B.
van Gelder
,
A.
Meetsma
, and
B. L.
Feringa
, “
Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification
,”
J. Am. Chem. Soc.
124
,
5037
5051
(
2002
).
11.
J. C. M.
Kistemaker
,
P.
Štacko
,
J.
Visser
, and
B. L.
Feringa
, “
Unidirectional rotary motion in achiral molecular motors
,”
Nat. Chem.
7
,
890
896
(
2015
).
12.
G.
Srivastava
,
P.
Stacko
,
J. I.
Mendieta-Moreno
,
S.
Edalatmanesh
,
J. C. M.
Kistemaker
,
G. H.
Heideman
,
L.
Zoppi
,
M.
Parschau
,
B.
Feringa
, and
K. H.
Ernst
, “
Driving a third generation molecular motor with electrons across a surface
,”
ACS Nano
17
,
3931
3938
(
2023
).
13.
P.
Roy
,
W. R.
Browne
,
B. L.
Feringa
, and
S. R.
Meech
, “
Ultrafast motion in a third generation photomolecular motor
,”
Nat. Commun.
14
,
1253
(
2023
).
14.
M.
Filatov
,
M.
Paolino
,
R.
Pierron
,
A.
Cappelli
,
G.
Giorgi
,
J.
Léonard
,
M.
Huix-Rotllant
,
N.
Ferré
,
X.
Yang
,
D.
Kaliakin
et al, “
Towards the engineering of a photon-only two-stroke rotary molecular motor
,”
Nat. Commun.
13
,
6433
(
2022
).
15.
C.
García-Iriepa
,
M.
Marazzi
,
F.
Zapata
,
A.
Valentini
,
D.
Sampedro
, and
L. M.
Frutos
, “
Chiral hydrogen bond environment providing unidirectional rotation in photoactive molecular motors
,”
J. Phys. Chem. Lett.
4
,
1389
1396
(
2013
).
16.
L.
Greb
and
J. M.
Lehn
, “
Light-driven molecular motors: Imines as four-step or two-step unidirectional rotors
,”
J. Am. Chem. Soc.
136
,
13114
13117
(
2014
).
17.
J.
Ma
,
D.
Zhao
,
C.
Jiang
,
Z.
Lan
, and
F.
Li
, “
Effect of temperature on photoisomerization dynamics of a newly designed two-stroke light-driven molecular rotary motor
,”
Int. J. Mol. Sci.
23
,
9694
(
2022
).
18.
K.
Kuntze
,
D. R. S.
Pooler
,
M.
Di Donato
,
M. F.
Hilbers
,
P.
van der Meulen
,
W. J.
Buma
,
A.
Priimagi
,
B. L.
Feringa
, and
S.
Crespi
, “
A visible-light-driven molecular motor based on barbituric acid
,”
Chem. Sci.
14
,
8458
8465
(
2023
).
19.
P.
Roy
,
A. S.
Sardjan
,
W.
Danowski
,
W. R.
Browne
,
B. L.
Feringa
, and
S. R.
Meech
, “
Control of photoconversion yield in unidirectional photomolecular motors by push–pull substituents
,”
J. Am. Chem. Soc.
145
,
19849
19855
(
2023
).
20.
N.
Guo
,
B.
Wang
, and
F.
Liu
, “
Theoretical design and mechanistic study on a light-driven molecular rotary motor with B=N axis
,”
Acta Chim. Sin.
76
,
196
201
(
2018
).
21.
M.
Filatov
and
M.
Olivucci
, “
Designing conical intersections for light-driven single molecule rotary motors: From precessional to axial motion
,”
J. Org. Chem.
79
,
3587
3600
(
2014
).
22.
J.
Conyard
,
A.
Cnossen
,
W. R.
Browne
,
B. L.
Feringa
, and
S. R.
Meech
, “
Chemically optimizing operational efficiency of molecular rotary motors
,”
J. Am. Chem. Soc.
136
,
9692
9700
(
2014
).
23.
U.
Muller
and
G.
Stock
, “
Surface-hopping modeling of photoinduced relaxation dynamics on coupled potential-energy surfaces
,”
J. Chem. Phys.
107
,
6230
6245
(
1997
).
24.
A.
Blanco-Gonzalez
,
M.
Manathunga
,
X.
Yang
, and
M.
Olivucci
, “
Comparative quantum-classical dynamics of natural and synthetic molecular rotors show how vibrational synchronization modulates the photoisomerization quantum efficiency
,”
Nat. Commun.
15
,
3499
(
2024
).
25.
J.
Conyard
,
K.
Addison
,
I. A.
Heisler
,
A.
Cnossen
,
W. R.
Browne
,
B. L.
Feringa
, and
S. R.
Meech
, “
Ultrafast dynamics in the power stroke of a molecular rotary motor
,”
Nat. Chem.
4
,
547
551
(
2012
).
26.
S.
Amirjalayer
,
A.
Cnossen
,
W. R.
Browne
,
B. L.
Feringa
,
W. J.
Buma
, and
S.
Woutersen
, “
Direct observation of a dark state in the photocycle of a light-driven molecular motor
,”
J. Phys. Chem. A
120
,
8606
8612
(
2016
).
27.
X.
Pang
,
H.
He
,
K.
Zhao
,
N.
Zhang
, and
Q.
Zhong
, “
Ultrafast nonadiabatic photoisomerization dynamics study of molecular motor based on the synthetic indanylidene-ppyrrolinium frameworks
,”
Chem. Phys. Lett.
819
,
140439
(
2023
).
28.
X.
Pang
,
X.
Cui
,
D.
Hu
,
C.
Jiang
,
D.
Zhao
et al, “‘
Watching’ the dark state in ultrafast nonadiabatic photoisomerization process of a light-driven molecular rotary motor
,”
J. Phys. Chem. A
121
,
1240
1249
(
2017
).
29.
K.
Svoboda
and
S. M.
Block
, “
Force and velocity measured for single kinesin molecules
,”
Cell
77
,
773
784
(
1994
).
30.
H.
Meyhöfer
, “
The force generated by a single kinesin molecule against an elastic load
,”
Proc. Natl. Acad. Sci. U. S. A.
92
,
574
578
(
1995
).
31.
C. M.
Coppin
,
D. W.
Pierce
,
L.
Hsu
, and
R. D.
Vale
, “
The load dependence of kinesin’s mechanicalcycle
,”
Proc. Natl. Acad. Sci. U. S. A.
94
,
8539
8544
(
1997
).
32.
H.
Kojima
,
E.
Muto
,
H.
Higuchi
, and
T.
Yanagida
, “
Mechanics of single kinesin molecules measured by optical trapping nanometry
,”
Biophys. J.
73
,
2012
2022
(
1997
).
33.
K.
Visscher
,
M. J.
Schnitzer
, and
S. M.
Block
, “
Single kinesin molecules studied with a molecular force clamp
,”
Nature
400
,
184
189
(
1999
).
34.
N. J.
Carter
and
R.
Cross
, “
Mechanics of the kinesin step
,”
Nature
435
,
308
312
(
2005
).
35.
A.
Yildiz
,
M.
Tomishige
,
A.
Gennerich
, and
R. D.
Vale
, “
Intramolecular strain coordinates kinesin stepping behavior along microtubules
,”
Cell
134
,
1030
1041
(
2008
).
36.
X. P.
Hu
,
X. D.
Zhao
,
I. Y.
Loh
,
J.
Yan
, and
Z. S.
Wang
, “
Single-molecule mechanical study of an autonomous artificial translational molecular motor beyond bridge-burning design
,”
Nanoscale
13
,
13195
13207
(
2021
).
37.
W. W.
Zheng
,
D. G.
Fan
,
M.
Feng
, and
Z. S.
Wang
, “
The intrinsic load-resisting capacity of kinesin
,”
Phys. Biol.
6
,
036002
(
2009
).
38.
M.
Rief
,
M.
Gautel
,
F.
Oesterhelt
,
J. M.
Fernandez
, and
H. E.
Gaub
, “
Reversible unfolding of individual titin immunoglobulin domains by AFM
,”
Science
276
,
1109
1112
(
1997
).
39.
M. F.
Iozzi
,
T.
Helgaker
, and
E.
Uggerud
, “
Influence of external force on properties and reactivity of disulfide bonds
,”
J. Phys. Chem. A
115
,
2308
2315
(
2011
).
40.
P.
Dopieralski
,
J.
Ribas-Arino
,
P.
Anjukandi
,
M.
Krupicka
, and
D.
Marx
, “
Force-induced reversal of β-eliminations: Stressed disulfide bonds in alkaline solution
,”
Angew. Chem., Int. Ed.
55
,
1304
1308
(
2016
).
41.
H.
Pei
,
M.
Li
,
P.
Wang
,
X.
Yao
,
Z.
Wen
, and
Z.
Yue
, “
The effect of tensile stress on oxidation behavior of nickel-base single crystal superalloy
,”
Corros. Sci.
191
,
109737
(
2021
).
42.
P.
Anjukandi
,
P.
Dopieralski
,
J.
Ribas-Arino
, and
D.
Marx
, “
The effect of tensile stress on the conformational free energy landscape of disulfide
,”
PLoS One
9
,
e108812
(
2014
).
43.
M.
Rief
,
M.
Gautel
,
A.
Schemmel
, and
H. E.
Gaub
, “
The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy
,”
Biophys. J.
75
,
3008
3014
(
1998
).
44.
M.
Grandbois
,
M.
Beyer
,
M.
Rief
,
H.
Clausen-Schaumann
, and
H. E.
Gaub
, “
How strong is a covalent bond?
,”
Science
283
,
1727
1730
(
1999
).
45.
J. N.
Brantley
,
C. B.
Bailey
,
K. M.
Wiggins
,
A. T.
Keatinge-Clay
, and
C. W.
Bielawski
, “
Mechanobiochemistry: Harnessing biomacromolecules for force-responsive materials
,”
Polym. Chem.
4
,
3916
3928
(
2013
).
46.
E.
Evans
and
K.
Ritchie
, “
Dynamic strength of molecular adhesion bonds
,”
Biophys. J.
72
,
1541
1555
(
1997
).
47.
I.
Franco
,
C. B.
George
,
G. C.
Solomon
,
G. C.
Schatz
, and
M. A.
Ratner
, “
Mechanically activated molecular switch through single-molecule pulling
,”
J. Am. Chem. Soc.
133
,
2242
2249
(
2011
).
48.
T.
Hugel
,
N. B.
Holland
,
A.
Cattani
,
L.
Moroder
,
M.
Seitz
, and
H. E.
Gaub
, “
Single-molecule optomechanical cycle
,”
Science
296
,
1103
1106
(
2002
).
49.
A.
Valentini
,
D.
Rivero
,
F.
Zapata
,
C.
García‐Iriepa
,
M.
Marazzi
,
R.
Palmeiro
,
I. F.
Galván
,
D.
Sampedro
,
M.
Olivucci
, and
L. M.
Frutos
, “
Optomechanical control of quantum yield in transcis ultrafast photoisomerization of a retinal chromophore model
,”
Angew. Chem., Int. Ed.
56
,
3842
3846
(
2017
).
50.
W.
Thiel
,
MNDO program, version 6.1
,
Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr
,
Germany
,
2007
).
51.
L.
Du
and
Z.
Lan
, “
An on-the-fly surface-hopping program JADE for nonadiabatic molecular dynamics of polyatomic systems: Implementation and applications
,”
J. Chem. Theory Comput.
11
,
1360
1374
(
2015
).
52.
E.
Fabiano
,
T.
Keal
, and
W.
Thiel
, “
Implementation of surface hopping molecular dynamics using semiempirical methods
,”
Chem. Phys.
349
,
334
347
(
2008
).
53.
W.
Weber
and
W.
Thiel
, “
Orthogonalization corrections for semiempirical methods
,”
Theor. Chem. Acc.
103
,
495
506
(
2000
).
54.
N.
Otte
,
M.
Scholten
, and
W.
Thiel
, “
Looking at self-consistent-charge density functional tight binding from a semiempirical perspective
,”
J. Phys. Chem. A
111
,
5751
5755
(
2007
).
55.
X.
Zhuang
,
J.
Wang
, and
Z.
Lan
, “
Photoinduced nonadiabatic decay and dissociation dynamics of dimethylnitramine
,”
J. Phys. Chem. A
117
,
4785
4793
(
2013
).
56.
A.
Kazaryan
,
Z.
Lan
,
L. V.
Schafer
,
W.
Thiel
, and
M.
Filatov
, “
Surface hopping excited-state dynamics study of the photoisomerization of a light-driven fluorene molecular rotary motor
,”
J. Chem. Theory Comput.
7
,
2189
2199
(
2011
).
57.
A.
Nikiforov
,
J. A.
Gamez
,
W.
Thiel
, and
M.
Filatov
, “
Computational design of a family of light-driven rotary molecular motors with improved quantum efficiency
,”
J. Phys. Chem. Lett.
7
,
105
110
(
2016
).
58.
B.
Heggen
,
Z.
Lan
, and
W.
Thiel
, “
Nonadiabatic decay dynamics of 9H-guanine in aqueous solution
,”
Phys. Chem. Chem. Phys.
14
,
8137
8146
(
2012
).
59.
O.
Weingart
,
Z.
Lan
,
A.
Koslowski
, and
W.
Thiel
, “
Chiral pathways and periodic decay in cis-azobenzene photodynamics
,”
J. Phys. Chem. Lett.
2
,
1506
1509
(
2011
).
60.
S.-H.
Xia
,
B.-B.
Xie
,
Q.
Fang
,
G.
Cui
, and
W.
Thiel
, “
Excited-state intramolecular proton transfer to carbon atoms: Nonadiabatic surface-hopping dynamics simulations
,”
Phys. Chem. Chem. Phys.
17
,
9687
9697
(
2015
).
61.
Y. T.
Wang
,
X. Y.
Liu
,
G.
Cui
,
W. H.
Fang
, and
W.
Thiel
, “
Photoisomerization of arylazopyrazole photoswitches: Stereospecific excited‐state relaxation
,”
Angew. Chem.
128
,
14215
14219
(
2016
).
62.
M.
Barbatti
,
G.
Granucci
,
M.
Persico
,
M.
Ruckenbauer
,
M.
Vazdar
,
M.
Eckert-Maksić
, and
H.
Lischka
, “
The on-the-fly surface-hopping program system Newton-X: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems
,”
J. Photochem. Photobiol., A
190
,
228
240
(
2007
).
63.
C.
Zhu
,
A. W.
Jasper
, and
D. G.
Truhlar
, “
Non-Born-Oppenheimer Liouville-von Neumann dynamics. Evolution of a subsystem controlled by linear and population-driven decay of mixing with decoherent and coherent switching
,”
J. Chem. Theory Comput.
1
,
527
540
(
2005
).
64.
G.
Granucci
,
M.
Persico
, and
A.
Zoccante
, “
Including quantum decoherence in surface hopping
,”
J. Chem. Phys.
133
,
134111
(
2010
).
65.
J.
Peng
,
Y.
Xie
,
D.
Hu
,
L.
Du
, and
Z.
Lan
, “
Treatment of nonadiabatic dynamics by on-the-fly trajectory surface hopping dynamics
,”
Acta Phys. -Chim. Sin.
35
,
28
48
(
2019
).
66.
J. E.
Mayer
and
W.
Band
, “
On the quantum correction for thermodynamic equilibrium
,”
J. Chem. Phys.
15
,
141
149
(
1947
).
67.
Z.
Lan
,
Y.
Lu
,
O.
Weingart
, and
W.
Thiel
, “
Nonadiabatic decay dynamics of a benzylidene malononitrile
,”
J. Phys. Chem. A
116
,
1510
1518
(
2012
), Molecules, spectroscopy, kinetics, environment, and general theory.
68.
S.
Ding
,
W.
Wang
,
A.
Germann
,
Y.
Wei
,
T.
Du
,
J.
Meisner
,
R.
Zhu
, and
Y.
Liu
, “
Bicyclo[2.2.0]hexene: A multicyclic mechanophore with reactivity diversified by external forces
,”
J. Am. Chem. Soc.
146
,
6104
6113
(
2024
).
69.
J.
Shao
,
Y.
Lei
,
Z.
Wen
,
Y.
Dou
, and
Z.
Wang
, “
Nonadiabatic simulation study of photoisomerization of azobenzene: Detailed mechanism and load-resisting capacity
,”
J. Chem. Phys.
129
,
164111
(
2008
).
70.
M.
Frisch
,
G.
Trucks
,
H.
Schlegel
,
G.
Scuseria
,
M.
Robb
,
J.
Cheeseman
,
J.
Montgomery
, Jr.
,
T.
Vreven
,
K.
Kudin
, and
J.
Burant
,
Gaussian 03, revision c. 02 2004
,
Gaussian, Inc.
,
Wallingford, CT
,
2013
.
71.
M.
Klok
,
L. P.
Janssen
,
W. R.
Browne
, and
B. L.
Feringa
, “
The influence of viscosity on the functioning of molecular motors
,”
Faraday Discuss.
143
,
319
334
(
2009
).

Supplementary Material

You do not currently have access to this content.