The generalized quantum master equation (GQME) approach provides a powerful general-purpose framework for simulating the inherently quantum mechanical dynamics of a subset of electronic reduced density matrix elements of interest in complex molecular systems. Previous studies have found that combining the GQME approach with quasiclassical mapping Hamiltonian (QC/MH) methods can dramatically improve the accuracy of electronic populations obtained via those methods. In this paper, we perform a complimentary study of the advantages offered by the GQME approach for simulating the dynamics of electronic coherences, which play a central role in optical spectroscopy, quantum information science, and quantum technology. To this end, we focus on cases where the electronic coherences predicted for the spin-boson benchmark model by direct application of various QC/MH methods are inaccurate. We find that similar to the case of electronic populations, combining the QC/MH methods with the GQME approach can dramatically improve the accuracy of the electronic coherences obtained via those methods. We also provide a comprehensive analysis of how the performance of GQMEs depends on the choice of projection operator and electronic basis and show that the accuracy and feasibility of the GQME approach can benefit from casting the GQME in terms of the eigen-basis of the observable of interest.

1.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
Oxford
,
1995
).
2.
S.
Nielsen
,
R.
Kapral
, and
G.
Ciccotti
, “
Mixed quantum-classical surface hopping dynamics
,”
J. Chem. Phys.
112
,
6543
6553
(
2000
).
3.
A.
Nitzan
,
Chemical Dynamics in Condensed Phases
(
Oxford University Press
,
New York
,
2006
).
4.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford Press
,
Oxford
,
2002
).
5.
P. A.
Liddell
,
D.
Kuciauskas
,
J. P.
Sumida
,
B.
Nash
,
D.
Nguyen
,
A. L.
Moore
,
T. A.
Moore
, and
D.
Gust
, “
Photoinduced charge separation and charge recombination to a triplet state in a Carotene−Porphyrin−Fullerene Triad
,”
J. Am. Chem. Soc.
119
,
1400
1405
(
1997
).
6.
P. A.
Liddell
,
G.
Kodis
,
A. L.
Moore
,
T. A.
Moore
, and
D.
Gust
, “
Photonic Switching of photoinduced electron transfer in a Dithienylethene−Porphyrin−Fullerene Triad molecule
,”
J. Am. Chem. Soc.
124
,
7668
7669
(
2002
).
7.
J.-L.
Brédas
,
D.
Beljonne
,
V.
Coropceanu
, and
J.
Cornil
, “
Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: A molecular picture
,”
Chem. Rev.
104
,
4971
5004
(
2004
).
8.
A. C.
Rizzi
,
M.
van Gastel
,
P. A.
Liddell
,
R. E.
Palacios
,
G. F.
Moore
,
G.
Kodis
,
A. L.
Moore
,
T. A.
Moore
,
D.
Gust
, and
S. E.
Braslavsky
, “
Entropic changes control the charge separation process in triads mimicking photosynthetic charge separation
,”
J. Phys. Chem. A
112
,
4215
4223
(
2008
).
9.
G.
Gordon
,
G.
Kurizki
, and
D.
Lidar
, “
Optimal dynamical decoherence control of a qubit
,”
Phys. Rev. Lett.
101
,
010403
(
2008
).
10.
H.
Tian
,
Z.
Yu
,
A.
Hagfeldt
,
L.
Kloo
, and
L.
Sun
, “
Organic redox couples and organic counter electrode for efficient organic dye-sensitized solar cells
,”
J. Am. Chem. Soc.
133
,
9413
9422
(
2011
).
11.
A.
Mishra
,
M. K. R.
Fischer
, and
P.
Bäuerle
, “
Metal-free organic dyes for dye-sensitized solar cells: From structure: Property relationships to design rules
,”
Angew. Chem., Int. Ed.
48
,
2474
2499
(
2009
).
12.
S. M.
Feldt
,
E. A.
Gibson
,
E.
Gabrielsson
,
L.
Sun
,
G.
Boschloo
, and
A.
Hagfeldt
, “
Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells
,”
J. Am. Chem. Soc.
132
,
16714
16724
(
2010
).
13.
Y.
Zhao
and
W.
Liang
, “
Charge transfer in organic molecules for solar cells: Theoretical perspective
,”
Chem. Soc. Rev.
41
,
1075
1087
(
2012
).
14.
M. H.
Lee
,
B. D.
Dunietz
, and
E.
Geva
, “
Calculation from first principles of intramolecular golden-rule rate constants for photo-induced electron transfer in molecular donor-acceptor systems
,”
J. Phys. Chem. C
117
,
23391
23401
(
2013
).
15.
M. H.
Lee
,
B. D.
Dunietz
, and
E.
Geva
, “
Donor-to-donor vs donor-to-acceptor interfacial charge transfer states in the phthalocyanine–fullerene organic photovoltaic system
,”
J. Phys. Chem. Lett.
5
,
3810
3816
(
2014
).
16.
J.
Tinnin
,
S.
Bhandari
,
P.
Zhang
et al, “
Correlating interfacial charge transfer rates with interfacial molecular structure in the tetraphenyldi-benzoperiflanthene/C70 organic photovoltaic system
,”
J. Phys. Chem. Lett.
13
,
763769
(
2022
).
17.
J.
Tinnin
,
H.
Aksu
,
Z.
Tong
et al, “
CTRAMER: An open-source software package for correlating interfacial charge transfer rate constants with donor/acceptor geometries in organic photovoltaic materials
,”
J. Chem. Phys.
154
,
214108
(
2021
).
18.
Y.
Song
,
A.
Schubert
,
X.
Liu
,
S.
Bhandari
,
S. R.
Forrest
,
B. D.
Dunietz
,
E.
Geva
, and
J. P.
Ogilvie
, “
Efficient charge generation via hole transfer in dilute organic donorfullerene blends
,”
J. Phys. Chem. Lett.
11
,
2203
2210
(
2020
).
19.
X.
Sun
,
P.
Zhang
,
Y.
Lai
,
K. L.
Williams
,
M. S.
Cheung
,
B. D.
Dunietz
, and
E.
Geva
, “
Computational study of charge-transfer dynamics in the carotenoid–porphyrin–C60 molecular triad Solvated in explicit tetrahydrofuran and its spectroscopic signature
,”
J. Phys. Chem. C
122
,
11288
11299
(
2018
).
20.
C.
Koch
, “
Controlling open quantum systems: Tools, achievements, and limitations
,”
J. Phys.: Condens. Matter
28
,
213001
(
2016
).
21.
J.
Leppäkangas
,
J.
Braumüller
,
M.
Hauck
,
J.-M.
Reiner
,
I.
Schwenk
,
S.
Zanker
,
L.
Fritz
,
A.
Ustinov
,
M.
Weides
, and
M.
Marthaler
, “
Quantum simulation of the spin-boson model with a microwave circuit
,”
Phys. Rev. A
97
,
052321
(
2018
).
22.
R.
Dutta
and
B.
Bagchi
, “
Delocalization and quantum entanglement in physical systems
,”
J. Phys. Chem. Lett.
10
,
2037
2043
(
2019
).
23.
K.
Head-Marsden
,
J.
Flick
,
C.
Ciccarino
, and
P.
Narang
, “
Quantum information and algorithms for correlated quantum matter
,”
Chem. Rev.
121
,
3061
3120
(
2021
).
24.
E.
Collini
, “
2d electronic spectroscopic techniques for quantum technology applications
,”
J. Phys. Chem. C
125
,
13096
13108
(
2021
).
25.
C.-K.
Lee
,
C.-Y.
Hsieh
,
S.
Zhang
, and
L.
Shi
, “
Simulation of condensed-phase spectroscopy with near-term digital quantum computers
,”
J. Chem. Theory Comput.
17
,
7178
7186
(
2021
).
26.
C.
Kim
,
J.
Nichol
,
A.
Jordan
, and
I.
Franco
, “
Analog quantum simulation of the dynamics of open quantum systems with quantum dots and microelectronic circuits
,”
PRX Quantum
3
,
040308
(
2022
).
27.
I.
Gustin
,
C. W.
Kim
,
D. W.
McCamant
, and
I.
Franco
, “
Mapping electronic decoherence pathways in molecules
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2309987120
(
2023
).
28.
T.
Zelevinsky
,
A.
Izmaylov
, and
A.
Alexandrova
, “
Physical chemistry of quantum information science
,”
J. Phys. Chem. A
127
,
10357
10359
(
2023
).
29.
S.
Zhang
,
Y.
Chen
, and
Q.
Shi
, “
Simulating the operation of a quantum computer in a dissipative environment
,”
J. Chem. Phys.
160
,
054101
(
2024
).
30.
M.
Bruschi
,
F.
Gallina
, and
B.
Fresch
, “
A quantum algorithm from response theory: Digital quantum simulation of two-dimensional electronic spectroscopy
,”
J. Phys. Chem. Lett.
15
,
1484
1492
(
2024
).
31.
Q.
Shi
and
E.
Geva
, “
A new approach to calculating the memory kernel of the generalized quantum master equation for an arbitrary system–bath coupling
,”
J. Chem. Phys.
119
,
12063
12076
(
2003
).
32.
Q.
Shi
and
E.
Geva
, “
A semiclassical generalized quantum master equation for an arbitrary system-bath coupling
,”
J. Chem. Phys.
120
,
10647
10658
(
2004
).
33.
M.-L.
Zhang
,
B. J.
Ka
, and
E.
Geva
, “
Nonequilibrium quantum dynamics in the condensed phase via the generalized quantum master equation
,”
J. Chem. Phys.
125
,
044106
044112
(
2006
).
34.
B. J.
Ka
,
M.-L.
Zhang
, and
E.
Geva
, “
Homogeneity and Markovity of electronic dephasing in liquid solutions
,”
J. Chem. Phys.
125
,
124509
(
2006
).
35.
G.
Cohen
and
E.
Rabani
, “
Memory effects in nonequilibrium quantum impurity models
,”
Phys. Rev. B
84
,
075150
(
2011
).
36.
E. Y.
Wilner
,
H.
Wang
,
G.
Cohen
,
M.
Thoss
, and
E.
Rabani
, “
Bistability in a nonequilibrium quantum system with electron-phonon interactions
,”
Phys. Rev. B
88
,
045137
(
2013
).
37.
G.
Cohen
,
E. Y.
Wilner
, and
E.
Rabani
, “
Generalized projected dynamics for non-system observables of non-equilibrium quantum impurity models
,”
New J. Phys.
15
,
073018
(
2013
).
38.
G.
Cohen
,
E.
Gull
,
D. R.
Reichman
,
A. J.
Millis
, and
E.
Rabani
, “
Numerically exact long-time magnetization dynamics at the nonequilibrium Kondo crossover of the Anderson impurity model
,”
Phys. Rev. B
87
,
195108
(
2013
).
39.
A.
Kelly
and
T. E.
Markland
, “
Efficient and accurate surface hopping for long time nonadiabatic quantum dynamics
,”
J. Chem. Phys.
139
,
014104
014110
(
2013
).
40.
L.
Kidon
,
E. Y.
Wilner
, and
E.
Rabani
, “
Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model
,”
J. Chem. Phys.
143
,
234110
234119
(
2015
).
41.
W. C.
Pfalzgraff
,
A.
Kelly
, and
T. E.
Markland
, “
Nonadiabatic dynamics in atomistic environments: Harnessing quantum-classical theory with generalized quantum master equations
,”
J. Phys. Chem. Lett.
6
,
4743
4748
(
2015
).
42.
A.
Montoya-Castillo
and
D. R.
Reichman
, “
Approximate but accurate quantum dynamics from the Mori formalism: I. Nonequilibrium dynamics
,”
J. Chem. Phys.
144
,
184104
184116
(
2016
).
43.
A.
Kelly
,
N.
Brackbill
, and
T. E.
Markland
, “
Accurate nonadiabatic quantum dynamics on the cheap: Making the most of mean field theory with master equations
,”
J. Chem. Phys.
142
,
094110
094119
(
2015
).
44.
A.
Kelly
,
A.
Montoya-Castillo
,
L.
Wang
, and
T. E.
Markland
, “
Generalized quantum master equations in and out of equilibrium: When can one win?
,”
J. Chem. Phys.
144
,
184105
(
2016
).
45.
L.
Kidon
,
H.
Wang
,
M.
Thoss
, and
E.
Rabani
, “
On the memory kernel and the reduced system propagator
,”
J. Chem. Phys.
149
,
104105
104114
(
2018
).
46.
W.
Pfalzgraff
,
A.
Montoya-Castillo
,
A.
Kelly
, and
T.
Markland
, “
Efficient construction of generalized master equation memory kernels for multi-state systems from nonadiabatic quantum-classical dynamics
,”
J. Chem. Phys.
150
,
244109
244116
(
2019
).
47.
E.
Mulvihill
,
A.
Schubert
,
X.
Sun
,
B. D.
Dunietz
, and
E.
Geva
, “
A modified approach for simulating electronically nonadiabatic dynamics via the generalized quantum master equation
,”
J. Chem. Phys.
150
,
034101
(
2019
).
48.
E.
Mulvihill
,
X.
Gao
,
Y.
Liu
,
A.
Schubert
,
B. D.
Dunietz
, and
E.
Geva
, “
Combining the mapping Hamiltonian linearized semiclassical approach with the generalized quantum master equation to simulate electronically nonadiabatic molecular dynamics
,”
J. Chem. Phys.
151
,
074103
(
2019
).
49.
E.
Mulvihill
,
K. M.
Lenn
,
X.
Gao
,
A.
Schubert
,
B. D.
Dunietz
, and
E.
Geva
, “
Simulating energy transfer dynamics in the Fenna-Matthews-Olson complex via the modified generalized quantum master equation
,”
J. Chem. Phys.
154
,
204109
(
2021
).
50.
E.
Mulvihill
and
E.
Geva
, “
A road map to various pathways for calculating the memory kernel of the generalized quantum master equation
,”
J. Phys. Chem. B
125
,
9834
9852
(
2021
).
51.
E.
Mulvihill
and
E.
Geva
, “
Simulating the dynamics of electronic observables via reduced-dimensionality generalized quantum master equations
,”
J. Chem. Phys.
156
,
044119
(
2022
).
52.
M.
Xu
,
Y.
Yan
,
Y.
Liu
, and
Q.
Shi
, “
Convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation and rate constants: Case study of the spin-boson model
,”
J. Chem. Phys.
148
,
164101
(
2018
).
53.
Y.-y.
Liu
,
Y.-m.
Yan
,
M.
Xu
,
K.
Song
, and
Q.
Shi
, “
Exact generator and its high order expansions in time-convolutionless generalized master equation: Applications to spin-boson model and excitation energy transfer
,”
Chin. J. Chem. Phys.
31
,
575
583
(
2018
).
54.
X.
Dan
,
M.
Xu
,
Y.
Yan
, and
Q.
Shi
, “
Generalized master equation for charge transport in a molecular junction: Exact memory kernels and their high order expansion
,”
J. Chem. Phys.
156
,
134114
(
2022
).
55.
S.
Chatterjee
and
N.
Makri
, “
Real-time path integral methods, quantum master equations, and classical vs quantum memory
,”
J. Phys. Chem. B
123
,
10470
10482
(
2019
).
56.
D.
Brian
and
X.
Sun
, “
Generalized quantum master equation: A tutorial review and recent advances
,”
Chin. J. Chem. Phys.
34
,
497
524
(
2021
).
57.
T.
Sayer
and
A.
Montoya-Castillo
, “
Efficient formulation of multitime generalized quantum master equations: Taming the cost of simulating 2D spectra
,”
J. Chem. Phys.
160
,
044108
(
2024
).
58.
G.
Amati
,
M.
Saller
,
A.
Kelly
, and
J.
Richardson
, “
Quasiclassical approaches to the generalized quantum master equation
,”
J. Chem. Phys.
157
,
234103
(
2022
).
59.
N.
Ng
,
D. T.
Limmer
, and
E.
Rabani
, “
Nonuniqueness of generalized quantum master equations for a single observable
,”
J. Chem. Phys.
155
,
156101
(
2021
).
60.
X.
Gao
,
M. A. C.
Saller
,
Y.
Liu
,
A.
Kelly
,
J. O.
Richardson
, and
E.
Geva
, “
Benchmarking quasiclassical mapping Hamiltonian methods for simulating electronically nonadiabatic molecular dynamics
,”
J. Chem. Theory Comput.
16
,
2883
2895
(
2020
).
61.
S.
Nakajima
, “
On quantum theory of transport phenomena: Steady diffusion
,”
Prog. Theor. Phys.
20
,
948
959
(
1958
).
62.
R.
Zwanzig
,
Lectures in Theoretical Physics (Boulder)
(
Interscience Publishers
,
1960
), Vol.
3
, p.
106
.
63.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
,
New York
,
2001
).
64.
H. D.
Meyer
and
W. H.
Miller
, “
A classical analog for electronic degrees of freedom in nonadiabatic collision processes
,”
J. Chem. Phys.
70
,
3214
3223
(
1979
).
65.
G.
Stock
and
U.
Müller
, “
Flow of zero-point energy and exploration of phase space in classical simulations of quantum relaxation dynamics
,”
J. Chem. Phys.
111
,
65
76
(
1999
).
66.
Y.
Liu
,
X.
Gao
,
Y.
Lai
,
E.
Mulvihill
, and
E.
Geva
, “
Electronic dynamics through conical intersections via quasiclassical mapping Hamiltonian methods
,”
J. Chem. Theory Comput.
16
,
4479
4488
(
2020
).
67.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
, “
Semiclassical theory of electronically nonadiabatic dynamics: Results of a linearized approximation to the initial value representation
,”
J. Chem. Phys.
109
,
7064
(
1998
).
68.
M.
Thoss
and
G.
Stock
, “
Mapping approach to the semiclassical description of nonadiabatic quantum dynamics
,”
Phys. Rev. A
59
,
64
79
(
1999
).
69.
W. H.
Miller
, “
The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations
,”
J. Phys. Chem. A
105
,
2942
2955
(
2001
).
70.
N.
Ananth
,
C.
Venkataraman
, and
W. H.
Miller
, “
Semiclassical description of electronically nonadiabatic dynamics via the initial value representation
,”
J. Chem. Phys.
127
,
084114
84210
(
2007
).
71.
W. H.
Miller
and
S. J.
Cotton
, “
Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a symmetrical quasi-classical approach to the full electronic density matrix
,”
J. Chem. Phys.
145
,
081102
081105
(
2016
).
72.
W. H.
Miller
and
S. J.
Cotton
, “
Classical molecular dynamics simulation of electronically non-adiabatic processes
,”
Faraday Discuss.
195
,
9
30
(
2016
).
73.
S. J.
Cotton
,
R.
Liang
, and
W. H.
Miller
, “
On the adiabatic representation of Meyer-Miller electronic-nuclear dynamics
,”
J. Chem. Phys.
147
,
064112
64211
(
2017
).
74.
M. A. C.
Saller
,
A.
Kelly
, and
J. O.
Richardson
, “
On the identity of the identity operator in nonadiabatic linearized semiclassical dynamics
,”
J. Chem. Phys.
150
,
071101
(
2019
).
75.
M. A. C.
Saller
,
A.
Kelly
, and
J. O.
Richardson
, “
Improved population operators for multi-state nonadiabatic dynamics with the mixed quantum-classical mapping approach
,”
Faraday Discuss.
221
,
150
(
2020
).
76.
X.
He
and
J.
Liu
, “
A new perspective for nonadiabatic dynamics with phase space mapping models
,”
J. Chem. Phys.
151
,
024105
024122
(
2019
).
77.
J. E.
Runeson
and
J. O.
Richardson
, “
Spin-mapping approach for nonadiabatic molecular dynamics
,”
J. Chem. Phys.
151
,
044119
(
2019
).
78.
G.
Stock
and
M.
Thoss
, “
Semiclassical description of nonadiabatic quantum dynamics
,”
Phys. Rev. Lett.
78
,
578
581
(
1997
).
79.
M.
Hillery
,
R. F.
O’Connell
,
M. O.
Scully
, and
E. P.
Wigner
, “
Distribution functions in physics: Fundamentals
,”
Phys. Rep.
106
,
121
(
1984
).
80.
A.
Kelly
,
R.
van Zon
,
J.
Schofield
, and
R.
Kapral
, “
Mapping quantum-classical Liouville equation: Projectors and trajectories
,”
J. Chem. Phys.
136
,
084101
084113
(
2012
).
81.
H.
Kim
,
A.
Nassimi
, and
R.
Kapral
, “
Quantum-classical Liouville dynamics in the mapping basis
,”
J. Chem. Phys.
129
,
084102
(
2008
).
82.
H.
Wang
,
X.
Song
,
D.
Chandler
, and
W. H.
Miller
, “
Semiclassical study of electronically nonadiabatic dynamics in the condensed-phase: Spin-boson problem with Debye spectral density
,”
J. Chem. Phys.
110
,
4828
4840
(
1999
).
83.
Y.
Yan
,
J.
Jin
,
R.-X.
Xu
, and
X.
Zheng
, “
Dissipation equation of motion approach to open quantum systems
,”
Front. Phys.
11
,
110306
(
2016
).
84.
R. K.
Wangsness
and
F.
Bloch
, “
The dynamical theory of nuclear induction
,”
Phys. Rev.
89
,
728
(
1953
).
85.
A. G.
Redfield
,
On the Theory of Relaxation Processes
(
IBM Jr
,
1957
), Vol.
1
, p.
19
.
86.
R.
Kubo
,
M.
Toda
, and
N.
Hashitsume
,
Statistical Physics II: Nonequilibrium Statistical Mechanics
(
Springer-Verlag
,
New York
,
1985
).
87.
B. B.
Laird
,
J.
Budimir
, and
J. L.
Skinner
,
J. Chem. Phys.
94
,
4391
(
1991
).
88.
W. T.
Pollard
,
A. K.
Felts
, and
R. A.
Friesner
, “
The Redfield Equation in Condensed-Phase Quantum Dynamics
,
Advances in Chemical Physics
, Vol.
XCIII
, p.
77
(
John Wiley and Sons
,
1996
).
89.
W. T.
Pollard
and
R. A.
Friesner
, “
Solution of the Redfield equation for the dissipative quantum dynamics of multilevel systems
,”
J. Chem. Phys.
100
,
5054
(
1994
).
90.
C. R.
Baiz
,
K. J.
Kubarych
, and
E.
Geva
, “
Molecular theory and simulation of coherence transfer in metal carbonyls and its signature on multidimensional infrared spectra
,”
J. Phys. Chem. B
115
,
5322
5339
(
2011
).
You do not currently have access to this content.