We have performed a series of broadband multidimensional electronic spectroscopy experiments to probe the electronic and vibrational dynamics of the canthaxanthin chromophore of the Orange Carotenoid Protein (OCP) from Synechocystis sp. PCC 6803 in its photoactivated red state, OCPR. Cross-peaks observed below the diagonal of the two-dimensional electronic spectrum indicate that absorption transitions prepare the bright S2 state of the ketocarotenoid canthaxanthin near to a sequence of conical intersections, allowing passage to the dark S1 state via the Sx intermediate in <50 fs. Rapid damping of excited-state coherent wavepacket motions suggests that the branching coordinates of the conical intersections include out-of-plane deformation and C=C stretching coordinates of the π-conjugated isoprenoid backbone. The unusual proximity of the Franck–Condon S2 state structure to the conical intersections with Sx and S1 suggests that the protein surroundings of canthaxanthin prepare it to function as an excitation energy trap in the OCPR–phycobilisome complex. Numerical simulations using the multimode Brownian oscillator model demonstrate that the ground-state absorption spectrum of OCPR overlaps with the fluorescence emission spectrum of allophycocyanin due to spectral broadening derived especially from the intramolecular motions of the canthaxanthin chromophore in its binding site.

1.
Y. P.
Wu
and
D. W.
Krogmann
, “
The orange carotenoid protein of Synechocystis PCC 6803
,”
Biochim. Biophys. Acta, Bioenerg.
1322
,
1
7
(
1997
).
2.
C. A.
Kerfeld
,
M. R.
Sawaya
,
V.
Brahmandam
,
D.
Cascio
,
K. K.
Ho
,
C. C.
Trevithick-Sutton
,
D. W.
Krogmann
, and
T. O.
Yeates
, “
The crystal structure of a cyanobacterial water-soluble carotenoid binding protein
,”
Structure
11
,
55
65
(
2003
).
3.
C. A.
Kerfeld
, “
Water-soluble carotenoid proteins of cyanobacteria
,”
Arch. Biochem. Biophys.
430
,
2
9
(
2004
).
4.
A.
Wilson
,
G.
Ajlani
,
J. M.
Verbavatz
,
I.
Vass
,
C. A.
Kerfeld
, and
D.
Kirilovsky
, “
A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria
,”
Plant Cell
18
,
992
1007
(
2006
).
5.
C.
Boulay
,
L.
Abasova
,
C.
Six
,
I.
Vass
, and
D.
Kirilovsky
, “
Occurrence and function of the orange carotenoid protein in photoprotective mechanisms in various cyanobacteria
,”
Biochim. Biophys. Acta, Bioenerg.
1777
,
1344
1354
(
2008
).
6.
A.
Wilson
,
C.
Punginelli
,
A.
Gall
,
C.
Bonetti
,
M.
Alexandre
,
J. M.
Routaboul
,
C. A.
Kerfeld
,
R.
van Grondelle
,
B.
Robert
,
J. T.
Kennis
, and
D.
Kirilovsky
, “
A photoactive carotenoid protein acting as light intensity sensor
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
12075
12080
(
2008
).
7.
R.
Berera
,
I. H. M.
van Stokkum
,
S.
d’Haene
,
J. T. M.
Kennis
,
R.
van Grondelle
, and
J. P.
Dekker
, “
A mechanism of energy dissipation in cyanobacteria
,”
Biophys. J.
96
,
2261
2267
(
2009
).
8.
A.
Wilson
,
J. N.
Kinney
,
P. H.
Zwart
,
C.
Punginelli
,
S.
D’Haene
,
F.
Perreau
,
M. G.
Klein
,
D.
Kirilovsky
, and
C. A.
Kerfeld
, “
Structural determinants underlying photoprotection in the photoactive orange carotenoid protein of cyanobacteria
,”
J. Biol. Chem.
285
,
18364
18375
(
2010
).
9.
S.
Gupta
,
M.
Guttman
,
R. L.
Leverenz
,
K.
Zhumadilova
,
E. G.
Pawlowski
,
C. J.
Petzold
,
K. K.
Lee
,
C. Y.
Ralston
, and
C. A.
Kerfeld
, “
Local and global structural drivers for the photoactivation of the orange carotenoid protein
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
E5567
E5574
(
2015
).
10.
R. L.
Leverenz
,
M.
Sutter
,
A.
Wilson
,
S.
Gupta
,
A.
Thurotte
,
C.
Bourcier de Carbon
,
C. J.
Petzold
,
C.
Ralston
,
F.
Perreau
,
D.
Kirilovsky
, and
C. A.
Kerfeld
, “
A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection
,”
Science
348
,
1463
1466
(
2015
).
11.
D.
Kirilovsky
and
C. A.
Kerfeld
, “
Cyanobacterial photoprotection by the orange carotenoid protein
,”
Nat. Plants
2
,
16180
(
2016
).
12.
M. A.
Domínguez-Martín
,
P. V.
Sauer
,
H.
Kirst
,
M.
Sutter
,
D.
Bína
,
B. J.
Greber
,
E.
Nogales
,
T.
Polívka
, and
C. A.
Kerfeld
, “
Structures of a phycobilisome in light-harvesting and photoprotected states
,”
Nature
609
,
835
845
(
2022
).
13.
L.
Tian
,
I. H. M.
van Stokkum
,
R. B. M.
Koehorst
,
A.
Jongerius
,
D.
Kirilovsky
, and
H.
van Amerongen
, “
Site, rate, and mechanism of photoprotective quenching in cyanobacteria
,”
J. Am. Chem. Soc.
133
,
18304
18311
(
2011
).
14.
L.
Tian
,
M.
Gwizdala
,
I. H. M.
van Stokkum
,
R. B. M.
Koehorst
,
D.
Kirilovsky
, and
H.
van Amerongen
, “
Picosecond kinetics of light harvesting and photoprotective quenching in wild-type and mutant phycobilisomes isolated from the cyanobacterium Synechocystis PCC 6803
,”
Biophys. J.
102
,
1692
1700
(
2012
).
15.
J. B.
Rose
,
J. A.
Gascón
,
M.
Sutter
,
D. I.
Sheppard
,
C. A.
Kerfeld
, and
W. F.
Beck
, “
Photoactivation of the orange carotenoid protein requires two light-driven reactions mediated by a metastable monomeric intermediate
,”
Phys. Chem. Chem. Phys.
25
,
33000
33012
(
2023
).
16.
D.
Harris
,
O.
Tal
,
D.
Jallet
,
A.
Wilson
,
D.
Kirilovsky
, and
N.
Adir
, “
Orange carotenoid protein burrows into the phycobilisome to provide photoprotection
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
E1655
E1662
(
2016
).
17.
P. V.
Sauer
,
L.
Cupellini
,
M.
Sutter
,
M.
Bondanza
,
M. A.
Domínguez Martin
,
H.
Kirst
,
D.
Bína
,
A. F.
Koh
,
A.
Kotecha
,
B. J.
Greber
,
E.
Nogales
,
T.
Polívka
,
B.
Mennucci
, and
C. A.
Kerfeld
, “
Structural and quantum chemical basis for OCP-mediated quenching of phycobilisomes
,”
Sci. Adv.
10
,
eadk7535
(
2024
).
18.
A. V.
Ruban
,
R.
Berera
,
C.
Ilioaia
,
I. H. M.
van Stokkum
,
J. T. M.
Kennis
,
A. A.
Pascal
,
H.
van Amerongen
,
B.
Robert
,
P.
Horton
, and
R.
van Grondelle
, “
Identification of a mechanism of photoprotective energy dissipation in higher plants
,”
Nature
450
,
575
578
(
2007
).
19.
S.
Bode
,
C. C.
Quentmeier
,
P.-N.
Liao
,
N.
Hafi
,
T.
Barros
,
L.
Wilk
,
F.
Bittner
, and
P. J.
Walla
, “
On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
12311
12316
(
2009
).
20.
H.
Staleva
,
J.
Komenda
,
M. K.
Shukla
,
V.
Šlouf
,
R.
Kaňa
,
T.
Polívka
, and
R.
Sobotka
, “
Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins
,”
Nat. Chem. Biol.
11
,
287
291
(
2015
).
21.
N. E.
Holt
,
D.
Zigmantas
,
L.
Valkunas
,
X.-P.
Li
,
K. K.
Niyogi
, and
G. R.
Fleming
, “
Carotenoid cation formation and the regulation of photosynthetic light harvesting
,”
Science
307
,
433
436
(
2005
).
22.
L.
Cupellini
,
D.
Calvani
,
D.
Jacquemin
, and
B.
Mennucci
, “
Charge transfer from the carotenoid can quench chlorophyll excitation in antenna complexes of plants
,”
Nat. Commun.
11
,
662
(
2020
).
23.
T.
Polívka
,
C. A.
Kerfeld
,
T.
Pascher
, and
V.
Sundström
, “
Spectroscopic properties of the carotenoid 3′-hydroxyechinenone in the orange carotenoid protein from the cyanobacterium Arthrospira maxima
,”
Biochemistry
44
,
3944
4003
(
2005
).
24.
R.
Berera
,
M.
Gwizdala
,
I. H. M.
van Stokkum
,
D.
Kirilovsky
, and
R.
van Grondelle
, “
Excited states of the inactive and active forms of the orange carotenoid protein
,”
J. Phys. Chem. B
117
,
9121
9128
(
2013
).
25.
T.
Polívka
,
P.
Chabera
, and
C. A.
Kerfeld
, “
Carotenoid–protein interaction alters the S1 energy of hydroxyechinenone in the orange carotenoid protein
,”
Biochim. Biophys. Acta, Bioenerg.
1827
,
248
254
(
2013
).
26.
V.
Šlouf
,
V.
Kuznetsova
,
M.
Fuciman
,
C. B.
de Carbon
,
A.
Wilson
,
D.
Kirilovsky
, and
T.
Polívka
, “
Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria
,”
Photosynth. Res.
131
,
105
117
(
2017
).
27.
T.
Wei
,
V.
Balevičius
,
T.
Polívka
,
A. V.
Ruban
, and
C. D. P.
Duffy
, “
How carotenoid distortions may determine optical properties: Lessons from the orange carotenoid protein
,”
Phys. Chem. Chem. Phys.
21
,
23187
23197
(
2019
).
28.
D. M.
Jonas
, “
Two-dimensional femtosecond spectroscopy
,”
Annu. Rev. Phys. Chem.
54
,
425
463
(
2003
).
29.
I. H. M.
van Stokkum
,
D. S.
Larsen
, and
R.
van Grondelle
, “
Global and target analysis of time-resolved spectra
,”
Biochim. Biophys. Acta, Bioenerg.
1657
,
82
104
(
2004
).
30.
T.
Polívka
and
V.
Sundström
, “
Ultrafast dynamics of carotenoid excited states-from solution to natural and artificial systems
,”
Chem. Rev.
104
,
2021
2071
(
2004
).
31.
T.
Polívka
and
V.
Sundström
, “
Dark excited states of carotenoids: Consensus and controversy
,”
Chem. Phys. Lett.
477
,
1
11
(
2009
).
32.
W. F.
Beck
,
M. M.
Bishop
,
J. D.
Roscioli
,
S.
Ghosh
, and
H. A.
Frank
, “
Excited state conformational dynamics in carotenoids: Dark intermediates and excitation energy transfer
,”
Arch. Biochem. Biophys.
572
,
175
183
(
2015
).
33.
H.
Hashimoto
,
C.
Uragami
,
N.
Yukihira
,
A. T.
Gardiner
, and
R. J.
Cogdell
, “
Understanding/unravelling carotenoid excited singlet states
,”
J. R. Soc. Interface
15
,
20180026
(
2018
).
34.
N.
Mohan T M
,
C. H.
Leslie
,
S.
Sil
,
J. B.
Rose
,
R. W.
Tilluck
, and
W. F.
Beck
, “
Broadband 2DES detection of vibrational coherence in the Sx state of canthaxanthin
,”
J. Chem. Phys.
155
,
035103
(
2021
).
35.
A.
Arcidiacono
,
D.
Accomasso
,
L.
Cupellini
, and
B.
Mennucci
, “
How orange carotenoid protein controls the excited state dynamics of canthaxanthin
,”
Chem. Sci.
14
,
11158
11169
(
2023
).
36.
D. R.
Yarkony
, “
Conical intersections: The new conventional wisdom
,”
J. Phys. Chem. A
105
,
6277
6293
(
2001
).
37.
B. G.
Levine
and
T. J.
Martínez
, “
Isomerization through conical intersections
,”
Annu. Rev. Phys. Chem.
58
,
613
634
(
2007
).
38.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
39.
T.
Förster
, “
Zwischenmolekulare energiewanderung und fluoreszenz
,”
Ann. Phys.
437
,
55
75
(
1948
).
40.
T.
Förster
, “
Mechanisms of energy transfer
,” in
Comprehensive Biochemistry
, edited by
M.
Florkin
and
E. H.
Stotz
(
Elsevier
,
Amsterdam
,
1967
), pp.
61
80
.
41.
D.
Beljonne
,
C.
Curutchet
,
G. D.
Scholes
, and
R. J.
Silbey
, “
Beyond Förster resonance energy transfer in biological and nanoscale systems
,”
J. Phys. Chem. B
113
,
6583
(
2009
).
42.
J. K.
Gurchiek
,
H.
Bao
,
M. A.
Domínguez-Martín
,
S. E.
McGovern
,
C. E.
Marquardt
,
J. D.
Roscioli
,
S.
Ghosh
,
C. A.
Kerfeld
, and
W. F.
Beck
, “
Fluorescence and excited-state conformational dynamics of the orange carotenoid protein
,”
J. Phys. Chem. B
122
,
1792
1800
(
2018
).
43.
J. K.
Gurchiek
,
J. B.
Rose
,
M. J.
Guberman-Pfeffer
,
R. W.
Tilluck
,
S.
Ghosh
,
J. A.
Gascón
, and
W. F.
Beck
, “
Fluorescence anisotropy detection of barrier crossing and ultrafast conformational dynamics in the S2 state of β-carotene
,”
J. Phys. Chem. B
124
,
9029
9046
(
2020
).
44.
R. W.
Tilluck
,
S.
Ghosh
,
M. J.
Guberman-Pfeffer
,
J. D.
Roscioli
,
J. K.
Gurchiek
,
A. M.
LaFountain
,
H. A.
Frank
,
J. A.
Gascón
, and
W. F.
Beck
, “
Interexciton nonradiative relaxation pathways in the peridinin-chlorophyll protein
,”
Cell Rep. Phys. Sci.
2
,
100380
(
2021
).
45.
S. H.
Shim
and
M. T.
Zanni
, “
How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping
,”
Phys. Chem. Chem. Phys.
11
,
748
761
(
2009
).
46.
R.
Augulis
and
D.
Zigmantas
, “
Two-dimensional electronic spectroscopy with double modulation lock-in detection: Enhancement of sensitivity and noise resistance
,”
Opt. Express
19
,
13126
13133
(
2011
).
47.
L.
Lepetit
,
G.
Chériaux
, and
M.
Joffre
, “
Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy
,”
J. Opt. Soc. Am. B
12
,
2467
2474
(
1995
).
48.
D. B.
Turner
,
K. E.
Wilk
,
P. M. G.
Curmi
, and
G. D.
Scholes
, “
Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy
,”
J. Phys. Chem. Lett.
2
,
1904
1911
(
2011
).
49.
V. V.
Lozovoy
,
I.
Pastirk
, and
M.
Dantus
, “
Multiphoton intrapulse interference 4: Characterization and compensation of the spectral phase of ultrashort laser pulses
,”
Opt. Lett.
29
,
775
777
(
2004
).
50.
K. W.
DeLong
,
R.
Trebino
,
J.
Hunter
, and
W. E.
White
, “
Frequency-resolved optical gating with the use of second-harmonic generation
,”
J. Opt. Soc. Am. B
11
,
2206
2215
(
1994
).
51.
H.
Barkhuijsen
,
R.
de Beer
, and
D.
van Ormondt
, “
Improved algorithm for noniterative time-domain model fitting to exponentially damped magnetic resonance signals
,”
J. Magn. Reson.
73
,
553
557
(
1987
).
52.
F.
Wise
,
M.
Rosker
,
G.
Millhauser
, and
C.
Tang
, “
Application of linear prediction least-squares fitting to time-resolved optical spectroscopy
,”
IEEE J. Quantum Electron.
23
,
1116
1121
(
1987
).
53.
I.
Eom
,
E.
Yoon
,
S.-H.
Baik
,
Y.-S.
Lim
, and
T.
Joo
, “
Retrieval of frequency spectrum from time-resolved spectroscopic data: Comparison of Fourier transform and linear prediction methods
,”
Opt. Express
22
,
30512
30519
(
2014
).
54.
L.
Zhu
,
P.
Li
,
M.
Huang
,
J. T.
Sage
, and
P. M.
Champion
, “
Real time observation of low frequency heme protein vibrations using femtosecond coherence spectroscopy
,”
Phys. Rev. Lett.
72
,
301
304
(
1994
).
55.
F.
Rosca
,
A. T. N.
Kumar
,
X.
Ye
,
T.
Sjodin
,
A. A.
Demidov
, and
P. M.
Champion
, “
Investigations of coherent vibrational oscillations in myoglobin
,”
J. Phys. Chem. A
104
,
4280
4290
(
2000
).
56.
M.
Golub
,
M.
Moldenhauer
,
F.-J.
Schmitt
,
W.
Lohstroh
,
T.
Friedrich
, and
J.
Pieper
, “
Light-induced conformational flexibility of the orange carotenoid protein studied by quasielastic neutron scattering with in situ illumination
,”
J. Phys. Chem. Lett.
14
,
295
301
(
2023
).
57.
S.
Ghosh
,
M. M.
Bishop
,
J. D.
Roscioli
,
J. J.
Mueller
,
N. C.
Shepherd
,
A. M.
LaFountain
,
H. A.
Frank
, and
W. F.
Beck
, “
Femtosecond heterodyne transient-grating studies of nonradiative decay of the S2(11Bu+) state of β-carotene: Contributions from dark intermediates and double-quantum coherences
,”
J. Phys. Chem. B
119
,
14905
14924
(
2015
).
58.
S.
Ghosh
,
M. M.
Bishop
,
J. D.
Roscioli
,
A. M.
LaFountain
,
H. A.
Frank
, and
W. F.
Beck
, “
Femtosecond heterodyne transient grating studies of nonradiative deactivation of the S2(11Bu+) state of peridinin: Detection and spectroscopic assignment of an intermediate in the decay pathway
,”
J. Phys. Chem. B
120
,
3601
3614
(
2016
).
59.
N.
Christensson
,
F.
Milota
,
A.
Nemeth
,
I.
Pugliesi
,
E.
Riedle
,
J.
Sperling
,
T.
Pullerits
,
H. F.
Kauffmann
, and
J.
Hauer
, “
Electronic double-quantum coherences and their impact on ultrafast spectroscopy: The example of β-carotene
,”
J. Phys. Chem. Lett.
1
,
3366
3370
(
2010
).
60.
J.
Kim
,
S.
Mukamel
, and
G. D.
Scholes
, “
Two-dimensional electronic double-quantum coherence spectroscopy
,”
Acc. Chem. Res.
42
,
1375
1384
(
2009
).
61.
E. E.
Ostroumov
,
R. M.
Mulvaney
,
R. J.
Cogdell
, and
G. D.
Scholes
, “
Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria
,”
Science
340
,
52
56
(
2013
).
62.
E. E.
Ostroumov
,
R. M.
Mulvaney
,
J. M.
Anna
,
R. J.
Cogdell
, and
G. D.
Scholes
, “
Energy transfer pathways in light-harvesting complexes of purple bacteria as revealed by global kinetic analysis of two-dimensional transient spectra
,”
J. Phys. Chem. B
117
,
11349
11362
(
2013
).
63.
D. W.
McCamant
,
P.
Kukura
, and
R. A.
Mathies
, “
Femtosecond time-resolved stimulated Raman spectroscopy: Application to the ultrafast internal conversion in β-carotene
,”
J. Phys. Chem. A
107
,
8208
8214
(
2003
).
64.
P.
Kukura
,
D. W.
McCamant
, and
R. A.
Mathies
, “
Femtosecond time-resolved stimulated Raman spectroscopy of the S2 (1Bu+) excited state of β-carotene
,”
J. Phys. Chem. A
108
,
5921
5925
(
2004
).
65.
M.
Garavelli
,
P.
Celani
,
F.
Bernardi
,
M. A.
Robb
, and
M.
Olivucci
, “
The C6H6NH2+ protonated Shiff base: An ab initio minimal model for retinal photoisomerization
,”
J. Am. Chem. Soc.
119
,
6891
6901
(
1997
).
66.
H. A.
Frank
,
J. A.
Bautista
,
J.
Josue
,
Z.
Pendon
,
R. G.
Hiller
,
F. P.
Sharples
,
D.
Gosztola
, and
M. R.
Wasielewski
, “
Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids
,”
J. Phys. Chem. B
104
,
4569
4577
(
2000
).
67.
D.
Zigmantas
,
R. G.
Hiller
,
F. P.
Sharples
,
H. A.
Frank
,
V.
Sundström
, and
T.
Polívka
, “
Effect of a conjugated carbonyl group on the photophysical properties of carotenoids
,”
Phys. Chem. Chem. Phys.
6
,
3009
3016
(
2004
).
68.
V.
Šlouf
,
P.
Chábera
,
J. D.
Olsen
,
E. C.
Martin
,
P.
Qian
,
C. N.
Hunter
, and
T.
Polívka
, “
Photoprotection in a purple phototrophic bacterium mediated by oxygen-dependent alteration of carotenoid excited-state properties
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
8570
8575
(
2012
).
69.
I. A.
Yaroshevich
,
E. G.
Maksimov
,
N. N.
Sluchanko
,
D. V.
Zlenko
,
A. V.
Stepanov
,
E. A.
Slutskaya
,
Y. B.
Slonimskiy
,
V. S.
Botnarevskii
,
A.
Remeeva
,
I.
Gushchin
,
K.
Kovalev
,
V. I.
Gordeliy
,
I. V.
Shelaev
,
F. E.
Gostev
,
D.
Khakhulin
,
V. V.
Poddubnyy
,
T. S.
Gostev
,
D. A.
Cherepanov
,
T.
Polívka
,
M.
Kloz
,
T.
Friedrich
,
V. Z.
Paschenko
,
V. A.
Nadtochenko
,
A. B.
Rubin
, and
M. P.
Kirpichnikov
, “
Role of hydrogen bond alternation and charge transfer states in photoactivation of the orange carotenoid protein
,”
Commun. Biol.
4
,
539
(
2021
).
70.
V.
Šebelík
,
C. D. P.
Duffy
,
E.
Keil
,
T.
Polívka
, and
J.
Hauer
, “
Understanding carotenoid dynamics via the vibronic energy relaxation approach
,”
J. Phys. Chem. B
126
,
3985
(
2022
).
71.
F. L.
de Weerd
,
I. H. M.
van Stokkum
, and
R.
van Grondelle
, “
Subpicosecond dynamics in the excited state absorption of all-trans-β-carotene
,”
Chem. Phys. Lett.
354
,
38
43
(
2002
).
72.
T.
Polívka
,
D.
Zigmantas
,
H. A.
Frank
,
J. A.
Bautista
,
J. L.
Herek
,
Y.
Koyama
,
R.
Fujii
, and
V.
Sundström
, “
Near-infrared time-resolved study of the S1 state dynamics of the carotenoid spheroidene
,”
J. Phys. Chem. B
105
,
1072
1080
(
2001
).
73.
Y.
Koyama
,
I.
Takatsuka
,
M.
Nakata
, and
M.
Tasumi
, “
Raman and infrared spectra of the all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers of β-carotene: Key bands distinguishing stretched or terminal-bent configurations from central-bent configurations
,”
J. Raman Spectrosc.
19
,
37
49
(
1988
).
74.
B.
Robert
, “
Resonance Raman spectroscopy
,”
Photosynth. Res.
101
,
147
155
(
2009
).
75.
M. J.
Llansola-Portoles
,
A. A.
Pascal
, and
B.
Robert
, “
Electronic and vibrational properties of carotenoids: From in vitro to in vivo
,”
J. R. Soc. Interface
14
,
20170504
(
2017
).
76.
V.
Butkus
,
D.
Zigmantas
,
L.
Valkunas
, and
D.
Abramavicius
, “
Vibrational vs. electronic coherences in 2D spectrum of molecular systems
,”
Chem. Phys. Lett.
545
,
40
43
(
2012
).
77.
D.
Egorova
, “
Self-analysis of coherent oscillations in time-resolved optical signals
,”
J. Phys. Chem. A
118
,
10259
10267
(
2014
).
78.
L. A.
Bizimana
,
W. P.
Carbery
,
T. A.
Gellen
, and
D. B.
Turner
, “
Signatures of Herzberg–Teller coupling in three-dimensional electronic spectroscopy
,”
J. Chem. Phys.
146
,
084311
(
2017
).
79.
C. A.
Farfan
and
D. B.
Turner
, “
Interference among multiple vibronic modes in two-dimensional electronic spectroscopy
,”
Mathematics
8
,
157
(
2020
).
80.
R. L.
Christensen
and
B. E.
Kohler
, “
Vibronic coupling in polyenes: High resolution optical spectroscopy of 2,10-dimethylundecapentaene
,”
J. Chem. Phys.
63
,
1837
1846
(
1975
).
81.
G.
Orlandi
and
F.
Zerbetto
, “
Vibronic coupling in polyenes: The frequency increase of the active C=C ag stretching mode in the absorption spectra
,”
Chem. Phys.
108
,
187
195
(
1986
).
82.
H.
Hashimoto
and
Y.
Koyama
, “
The C=C stretching Raman lines of β-carotene isomers in the S1 state as detected by pump-probe resonance Raman spectroscopy
,”
Chem. Phys. Lett.
154
,
321
325
(
1989
).
83.
H.
Hashimoto
and
Y.
Koyama
, “
Raman spectra of all-trans-β-carotene in the S1 and T1 states produced by direct photoexcitation
,”
Chem. Phys. Lett.
163
,
251
256
(
1989
).
84.
M.
Aoyagi
,
I.
Ohmine
, and
B. E.
Kohler
, “
Frequency increase of the C=C ag stretch mode of polyenes in the 21Ag state: Ab initio MCSCF study of butadiene, hexatriene, and octatetraene
,”
J. Phys. Chem.
94
,
3922
3926
(
1990
).
85.
H.
Hayashi
,
S. V.
Kolaczkowski
,
T.
Noguchi
,
D.
Blanchard
, and
G. H.
Atkinson
, “
Picosecond time-resolved resonance Raman scattering and absorbance changes from carotenoids in light-harvesting systems of photosynthetic bacterium Chromatium vinosum
,”
J. Am. Chem. Soc.
112
,
4664
4670
(
1990
).
86.
T.
Noguchi
,
H.
Hayashi
,
M.
Tasumi
, and
G. H.
Atkinson
, “
Solvent effects on the ag carbon-carbon double bond stretching mode in the 21Ag excited state of β-carotene and two derivatives: Picosecond time-resolved resonance Raman spectroscopy
,”
J. Phys. Chem.
95
,
3167
3172
(
1991
).
87.
H.
Hayashi
,
T. L.
Brack
,
T.
Noguchi
,
M.
Tasumi
, and
G. H.
Atkinson
, “
Vibrational relaxation in carotenoids in vivo and in vitro: Picosecond time-resolved anti-Stokes resonance Raman spectroscopy
,”
J. Phys. Chem.
95
,
6797
6802
(
1991
).
88.
B.
Robert
, “
The electronic structure, stereochemistry and resonance Raman spectroscopy of carotenoids
,” in
The Photochemistry of Carotenoids
, edited by
H. A.
Frank
,
A. J.
Young
,
G.
Britton
, and
R. J.
Cogdell
(
Springer
,
Dordrecht, The Netherlands
,
1999
), pp.
189
201
.
89.
M.
Liebel
,
C.
Schnedermann
, and
P.
Kukura
, “
Vibrationally coherent crossing and coupling of electronic states during internal conversion in β-carotene
,”
Phys. Rev. Lett.
112
,
198302
(
2014
).
90.
M.
Liebel
and
P.
Kukura
, “
Broad-band impulsive vibrational spectroscopy of excited electronic states in the time domain
,”
J. Phys. Chem. Lett.
4
,
1358
1364
(
2013
).
91.
V.
Bonačić-Koutecký
,
J.
Koutecký
, and
J.
Michl
, “
Neutral and charged biradicals, zwitterions, funnels in S1, and proton translocation: Their role in photochemistry, photophysics, and vision
,”
Angew Chem. Int. Ed. Engl.
26
,
170
189
(
1987
).
92.
M.
Klessinger
and
J.
Michl
,
Excited States and Photochemistry of Organic Molecules
(
VCH Publishers
,
New York
,
1995
).
93.
S.
Gozem
,
H. L.
Luk
,
I.
Schapiro
, and
M.
Olivucci
, “
Theory and simulation of the ultrafast double-bond isomerization of biological chromophores
,”
Chem. Rev.
117
,
13502
13565
(
2017
).
94.
B. G.
Levine
,
M. P.
Esch
,
B. S.
Fales
,
D. T.
Hardwick
,
W.-T.
Peng
, and
Y.
Shu
, “
Conical intersections at the nanoscale: Molecular ideas for materials
,”
Annu. Rev. Phys. Chem.
70
,
21
43
(
2019
).
95.
R. W.
Tilluck
,
N.
Mohan T M
,
C. V.
Hetherington
,
C. H.
Leslie
,
S.
Sil
,
J.
Frazier
,
M.
Zhang
,
B. G.
Levine
,
P. G.
Van Patten
, and
W. F.
Beck
, “
Vibronic excitons and conical intersections in semiconductor quantum dots
,”
J. Phys. Chem. Lett.
12
,
9677
9683
(
2021
).
96.
C. V.
Hetherington
,
N.
Mohan T M
,
R. W.
Tilluck
,
W. F.
Beck
, and
B. G.
Levine
, “
Origin of vibronic coherences during carrier cooling in colloidal quantum dots
,”
J. Phys. Chem. Lett.
14
,
11651
11658
(
2023
).
97.
W. T.
Pollard
and
R. A.
Mathies
, “
Analysis of femtosecond dynamic absorption spectra of nonstationary states
,”
Annu. Rev. Phys. Chem.
43
,
497
523
(
1992
).
98.
H.-G.
Duan
,
R. J. D.
Miller
, and
M.
Thorwart
, “
Impact of vibrational coherence on the quantum yield at a conical intersection
,”
J. Phys. Chem. Lett.
7
,
3491
3496
(
2016
).
99.
S. R.
Rather
and
G. D.
Scholes
, “
From fundamental theories to quantum coherences in electron transfer
,”
J. Am. Chem. Soc.
141
,
708
722
(
2019
).
100.
G. J.
Atchity
,
S. S.
Xantheas
, and
K.
Ruedenberg
, “
Potential energy surfaces near intersections
,”
J. Chem. Phys.
95
,
1862
1876
(
1991
).
101.
S.
Ghosh
,
J. D.
Roscioli
,
M. M.
Bishop
,
J. K.
Gurchiek
,
A. M.
LaFountain
,
H. A.
Frank
, and
W. F.
Beck
, “
Torsional dynamics and intramolecular charge transfer in the S2 (11Bu+) excited state of peridinin: A mechanism for enhanced mid-visible light harvesting
,”
J. Phys. Chem. Lett.
7
,
3621
3626
(
2016
).
102.
P.
Tavan
and
K.
Schulten
, “
Electronic excitations in finite and infinite polyenes
,”
Phys. Rev. B
36
,
4337
4358
(
1987
).
103.
G.
Cerullo
,
D.
Polli
,
G.
Lanzani
,
S.
De Silvestri
,
H.
Hashimoto
, and
R. J.
Cogdell
, “
Photosynthetic light harvesting by carotenoids: Detection of an intermediate excited state
,”
Science
298
,
2395
2398
(
2002
).
104.
W. F.
Beck
, “
Intramolecular charge transfer and the function of vibronic excitons in photosynthetic light harvesting
,”
Photosynth. Res.
(published online,
2024
).
105.
L.
Fiedor
,
Heriyanto
,
J.
Fiedor
, and
M.
Pilch
, “
Effects of molecular symmetry on the electronic transitions in carotenoids
,”
J. Phys. Chem. Lett.
7
,
1821
1829
(
2016
).
106.
L.
Fiedor
,
A.
Dudkowiak
, and
M.
Pilch
, “
The origin of the dark S1 state in carotenoids: A comprehensive model
,”
J. R. Soc. Interface
16
,
20190191
(
2019
).
You do not currently have access to this content.