While the many-body expansion (MBE) and counterpoise treatments are commonly used to mitigate the high scaling of accurate ab initio methods, researchers may need to piece together tools and scripts if their primary chosen software does not support targeted features. To further modular software in quantum chemistry, the arbitrary-order, multiple-model-chemistry, counterpoise-enabled MBE implementation from Psi4 has been extracted into an independent, lightweight, and open-source Python module, QCManyBody, with new schema underpinning, application programming interface, and software integrations. The package caters to direct users by facilitating single-point and geometry optimization MBE calculations backed by popular quantum chemistry codes through the QCEngine runner and by defining a schema for requesting and reporting many-body computations. It also serves developers and integrators by providing minimal, composable, and extensible interfaces. The design and flexibility of QCManyBody are demonstrated via integrations with geomeTRIC, OptKing, Psi4, QCEngine, and the QCArchive project.

1.
M. S.
Gordon
,
D. G.
Fedorov
,
S. R.
Pruitt
, and
L. V.
Slipchenko
, “
Fragmentation methods: A route to accurate calculations on large systems
,”
Chem. Rev.
112
,
632
672
(
2012
).
2.
J. M.
Herbert
, “
Fantasy versus reality in fragment-based quantum chemistry
,”
J. Chem. Phys.
151
,
170901
(
2019
).
3.
J. P.
Heindel
and
S. S.
Xantheas
, “
The many-body expansion for aqueous systems revisited: I. Water–water interactions
,”
J. Chem. Theory Comput.
16
,
6843
6855
(
2020
).
4.
S. F.
Boys
and
F.
Bernardi
, “
The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
,”
Mol. Phys.
19
,
553
566
(
1970
).
5.
J. F.
Ouyang
,
M. W.
Cvitkovic
, and
R. P. A.
Bettens
, “
Trouble with the many-body expansion
,”
J. Chem. Theory Comput.
10
,
3699
3707
(
2014
).
6.
R. M.
Richard
,
B. W.
Bakr
, and
C. D.
Sherrill
, “
Understanding the many-body basis set superposition error: Beyond Boys and Bernardi
,”
J. Chem. Theory Comput.
14
,
2386
2400
(
2018
).
7.
E.
Epifanovsky
,
A. T. B.
Gilbert
,
X.
Feng
,
J.
Lee
,
Y.
Mao
,
N.
Mardirossian
,
P.
Pokhilko
,
A. F.
White
,
M. P.
Coons
,
A. L.
Dempwolff
,
Z.
Gan
,
D.
Hait
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
J.
Kussmann
,
A. W.
Lange
,
K. U.
Lao
,
D. S.
Levine
,
J.
Liu
,
S. C.
McKenzie
,
A. F.
Morrison
,
K. D.
Nanda
,
F.
Plasser
,
D. R.
Rehn
,
M. L.
Vidal
,
Z.-Q.
You
,
Y.
Zhu
,
B.
Alam
,
B. J.
Albrecht
,
A.
Aldossary
,
E.
Alguire
,
J. H.
Andersen
,
V.
Athavale
,
D.
Barton
,
K.
Begam
,
A.
Behn
,
N.
Bellonzi
,
Y. A.
Bernard
,
E. J.
Berquist
,
H. G. A.
Burton
,
A.
Carreras
,
K.
Carter- Fenk
,
R.
Chakraborty
,
A. D.
Chien
,
K. D.
Closser
,
V.
Cofer-Shabica
,
S.
Dasgupta
,
M.
de Wergifosse
,
J.
Deng
,
M.
Diedenhofen
,
H.
Do
,
S.
Ehlert
,
P.-T.
Fang
,
S.
Fatehi
,
Q.
Feng
,
T.
Friedhoff
,
J.
Gayvert
,
Q.
Ge
,
G.
Gidofalvi
,
M.
Goldey
,
J.
Gomes
,
C. E.
González-Espinoza
,
S.
Gulania
,
A. O.
Gunina
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A.
Hauser
,
M. F.
Herbst
,
M.
Hernández Vera
,
M.
Hodecker
,
Z. C.
Holden
,
S.
Houck
,
X.
Huang
,
K.
Hui
,
B. C.
Huynh
,
M.
Ivanov
,
Á.
Jász
,
H.
Ji
,
H.
Jiang
,
B.
Kaduk
,
S.
Kähler
,
K.
Khistyaev
,
J.
Kim
,
G.
Kis
,
P.
Klunzinger
,
Z.
Koczor-Benda
,
J. H.
Koh
,
D.
Kosenkov
,
L.
Koulias
,
T.
Kowalczyk
,
C. M.
Krauter
,
K.
Kue
,
A.
Kunitsa
,
T.
Kus
,
I.
Ladjańszki
,
A.
Landau
,
K. V.
Lawler
,
D.
Lefrancois
,
S.
Lehtola
,
R. R.
Li
,
Y.-P.
Li
,
J.
Liang
,
M.
Liebenthal
,
H.-H.
Lin
,
Y.-S.
Lin
,
F.
Liu
,
K.-Y.
Liu
,
M.
Loipersberger
,
A.
Luenser
,
A.
Manjanath
,
P.
Manohar
,
E.
Mansoor
,
S. F.
Manzer
,
S.-P.
Mao
,
A. V.
Marenich
,
T.
Markovich
,
S.
Mason
,
S. A.
Maurer
,
P. F.
McLaughlin
,
M. F. S. J.
Menger
,
J.-M.
Mewes
,
S. A.
Mewes
,
P.
Morgante
,
J. W.
Mullinax
,
K. J.
Oosterbaan
,
G.
Paran
,
A. C.
Paul
,
S. K.
Paul
,
F.
Pavošević
,
Z.
Pei
,
S.
Prager
,
E. I.
Proynov
,
Á.
Rák
,
E.
Ramos-Cordoba
,
B.
Rana
,
A. E.
Rask
,
A.
Rettig
,
R. M.
Richard
,
F.
Rob
,
E.
Rossomme
,
T.
Scheele
,
M.
Scheurer
,
M.
Schneider
,
N.
Sergueev
,
S. M.
Sharada
,
W.
Skomorowski
,
D. W.
Small
,
C. J.
Stein
,
Y.-C.
Su
,
E. J.
Sundstrom
,
Z.
Tao
,
J.
Thirman
,
G. J.
Tornai
,
T.
Tsuchimochi
,
N. M.
Tubman
,
S. P.
Veccham
,
O.
Vydrov
,
J.
Wenzel
,
J.
Witte
,
A.
Yamada
,
K.
Yao
,
S.
Yeganeh
,
S. R.
Yost
,
A.
Zech
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhang
,
D.
Zuev
,
A.
Aspuru-Guzik
,
A. T.
Bell
,
N. A.
Besley
,
K. B.
Bravaya
,
B. R.
Brooks
,
D.
Casanova
,
J.-D.
Chai
,
S.
Coriani
,
C. J.
Cramer
,
G.
Cserey
,
A. E.
DePrince
III
,
R. A.
DiStasio
, Jr.
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
W. A.
Goddard
III
,
S.
Hammes-Schiffer
,
T.
Head-Gordon
,
W. J.
Hehre
,
C.-P.
Hsu
,
T.-C.
Jagau
,
Y.
Jung
,
A.
Klamt
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
N. J.
Mayhall
,
C. W.
McCurdy
,
J. B.
Neaton
,
C.
Ochsenfeld
,
J. A.
Parkhill
,
R.
Peverati
,
V. A.
Rassolov
,
Y.
Shao
,
L. V.
Slipchenko
,
T.
Stauch
,
R. P.
Steele
,
J. E.
Subotnik
,
A. J. W.
Thom
,
A.
Tkatchenko
,
D. G.
Truhlar
,
T.
Van Voorhis
,
T. A.
Wesolowski
,
K. B.
Whaley
,
H. L.
Woodcock
III
,
P. M.
Zimmerman
,
S.
Faraji
,
P. M. W.
Gill
,
M.
Head-Gordon
,
J. M.
Herbert
, and
A. I.
Krylov
, “
Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
,”
J. Chem. Phys.
155
,
084801
(
2021
).
8.
D. G. A.
Smith
,
L. A.
Burns
,
A. C.
Simmonett
,
R. M.
Parrish
,
M. C.
Schieber
,
R.
Galvelis
,
P.
Kraus
,
H.
Kruse
,
R.
Di Remigio
,
A.
Alenaizan
,
A. M.
James
,
S.
Lehtola
,
J. P.
Misiewicz
,
M.
Scheurer
,
R. A.
Shaw
,
J. B.
Schriber
,
Y.
Xie
,
Z. L.
Glick
,
D. A.
Sirianni
,
J. S.
O’Brien
,
J. M.
Waldrop
,
A.
Kumar
,
E. G.
Hohenstein
,
B. P.
Pritchard
,
B. R.
Brooks
,
H. F.
Schaefer
III
,
A. Y.
Sokolov
,
K.
Patkowski
,
A. E.
DePrince
III
,
U.
Bozkaya
,
R. A.
King
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
, “
PSI4 1.4: Open-source software for high-throughput quantum chemistry
,”
J. Chem. Phys.
152
,
184108
(
2020
).
9.
J. M.
Turney
(
2024
). “
PSI4: Open-source quantum chemistry
,” GitHub for the current version, see https://github.com/psi4/psi4, for the originating project, see https://psicode.org/
10.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
Gaussian 16
,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
11.
E.
Aprà
,
E. J.
Bylaska
,
W. A.
de Jong
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
M.
Valiev
,
H. J. J.
van Dam
,
Y.
Alexeev
,
J.
Anchell
,
V.
Anisimov
,
F. W.
Aquino
,
R.
Atta-Fynn
,
J.
Autschbach
,
N. P.
Bauman
,
J. C.
Becca
,
D. E.
Bernholdt
,
K.
Bhaskaran-Nair
,
S.
Bogatko
,
P.
Borowski
,
J.
Boschen
,
J.
Brabec
,
A.
Bruner
,
E.
Cauët
,
Y.
Chen
,
G. N.
Chuev
,
C. J.
Cramer
,
J.
Daily
,
M. J. O.
Deegan
,
T. H.
Dunning
,
M.
Dupuis
,
K. G.
Dyall
,
G. I.
Fann
,
S. A.
Fischer
,
A.
Fonari
,
H.
Früchtl
,
L.
Gagliardi
,
J.
Garza
,
N.
Gawande
,
S.
Ghosh
,
K.
Glaesemann
,
A. W.
Götz
,
J.
Hammond
,
V.
Helms
,
E. D.
Hermes
,
K.
Hirao
,
S.
Hirata
,
M.
Jacquelin
,
L.
Jensen
,
B. G.
Johnson
,
H.
Jónsson
,
R. A.
Kendall
,
M.
Klemm
,
R.
Kobayashi
,
V.
Konkov
,
S.
Krishnamoorthy
,
M.
Krishnan
,
Z.
Lin
,
R. D.
Lins
,
R. J.
Littlefield
,
A. J.
Logsdail
,
K.
Lopata
,
W.
Ma
,
A. V.
Marenich
,
J.
Martin del Campo
,
D.
Mejia-Rodriguez
,
J. E.
Moore
,
J. M.
Mullin
,
T.
Nakajima
,
D. R.
Nascimento
,
J. A.
Nichols
,
P. J.
Nichols
,
J.
Nieplocha
,
A.
Otero-de-la Roza
,
B.
Palmer
,
A.
Panyala
,
T.
Pirojsirikul
,
B.
Peng
,
R.
Peverati
,
J.
Pittner
,
L.
Pollack
,
R. M.
Richard
,
P.
Sadayappan
,
G. C.
Schatz
,
W. A.
Shelton
,
D. W.
Silverstein
,
D. M. A.
Smith
,
T. A.
Soares
,
D.
Song
,
M.
Swart
,
H. L.
Taylor
,
G. S.
Thomas
,
V.
Tipparaju
,
D. G.
Truhlar
,
K.
Tsemekhman
,
T.
Van Voorhis
,
Á.
Vázquez-Mayagoitia
,
P.
Verma
,
O.
Villa
,
A.
Vishnu
,
K. D.
Vogiatzis
,
D.
Wang
,
J. H.
Weare
,
M. J.
Williamson
,
T. L.
Windus
,
K.
Woliński
,
A. T.
Wong
,
Q.
Wu
,
C.
Yang
,
Q.
Yu
,
M.
Zacharias
,
Z.
Zhang
,
Y.
Zhao
, and
R. J.
Harrison
, “
NWChem: Past, present, and future
,”
J. Chem. Phys.
152
,
184102
(
2020
).
12.
Y. J.
Franzke
,
C.
Holzer
,
J. H.
Andersen
,
T.
Begušić
,
F.
Bruder
,
S.
Coriani
,
F.
Della Sala
,
E.
Fabiano
,
D. A.
Fedotov
,
S.
Fürst
,
S.
Gillhuber
,
R.
Grotjahn
,
M.
Kaupp
,
M.
Kehry
,
M.
Krstić
,
F.
Mack
,
S.
Majumdar
,
B. D.
Nguyen
,
S. M.
Parker
,
F.
Pauly
,
A.
Pausch
,
E.
Perlt
,
G. S.
Phun
,
A.
Rajabi
,
D.
Rappoport
,
B.
Samal
,
T.
Schrader
,
M.
Sharma
,
E.
Tapavicza
,
R. S.
Treß
,
V.
Voora
,
A.
Wodyński
,
J. M.
Yu
,
B.
Zerulla
,
F.
Furche
,
C.
Hättig
,
M.
Sierka
,
D. P.
Tew
, and
F.
Weigend
, “
Turbomole: Today and tomorrow
,”
J. Chem. Theory Comput.
19
,
6859
6890
(
2023
).
13.
H.-J.
Werner
,
P. J.
Knowles
,
F. R.
Manby
,
J. A.
Black
,
K.
Doll
,
A.
Heßelmann
,
D.
Kats
,
A.
Köhn
,
T.
Korona
,
D. A.
Kreplin
,
Q.
Ma
,
T. F.
Miller
III
,
A.
Mitrushchenkov
,
K. A.
Peterson
,
I.
Polyak
,
G.
Rauhut
, and
M.
Sibaev
, “
The Molpro quantum chemistry package
,”
J. Chem. Phys.
152
,
144107
(
2020
).
14.
S.
Simon
,
M.
Duran
, and
J. J.
Dannenberg
, “
How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers?
,”
J. Chem. Phys.
105
,
11024
11031
(
1996
).
15.
P.
Salvador
and
M. M.
Szczȩśniak
, “
Counterpoise-corrected geometries and harmonic frequencies of N-body clusters: Application to (HF)n (n = 3, 4)
,”
J. Chem. Phys.
118
,
537
549
(
2003
).
16.
B. G.
Peyton
and
T. D.
Crawford
, “
Basis set superposition errors in the many-body expansion of molecular properties
,”
J. Phys. Chem. A
123
,
4500
4511
(
2019
).
17.
J.
Řezáč
, “
Cuby: An integrative framework for computational chemistry
,”
J. Comput. Chem.
37
,
1230
1237
(
2016
).
18.
J.
Řezáč
,
O. V.
Kontkanen
, and
M.
Nováček
, “
Working with benchmark datasets in the Cuby framework
,”
J. Chem. Phys.
160
,
202501
(
2024
).
19.
J.
Řezáč
, Cuby—Ruby framework for computational chemistry, version 4, http://cuby4.molecular.cz (accessed April 2024).
20.
P.
Seeber
,
S.
Seidenath
,
J.
Steinmetzer
, and
S.
Gräfe
, “
Growing spicy ONIOMs: Extending and generalizing concepts of ONIOM and many body expansions
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
13
,
e1644
(
2023
).
21.
P.
Seeber
and
S.
Seidenath
, Spicy: Computational chemistry with multilayer fragment methods. For the current version, see https://gitlab.com/theoretical-chemistry-jena/quantum-chemistry/Spicy (accessed April 2024).
22.
L. W.
Chung
,
W. M. C.
Sameera
,
R.
Ramozzi
,
A. J.
Page
,
M.
Hatanaka
,
G. P.
Petrova
,
T. V.
Harris
,
X.
Li
,
Z.
Ke
,
F.
Liu
,
H.-B.
Li
,
L.
Ding
, and
K.
Morokuma
, “
The ONIOM method and its applications
,”
Chem. Rev.
115
,
5678
5796
(
2015
).
23.
R. M.
Richard
and
J. M.
Herbert
, “
A generalized many-body expansion and a unified view of fragment-based methods in electronic structure theory
,”
J. Chem. Phys.
137
,
064113
(
2012
).
24.
D. R.
Broderick
and
J. M.
Herbert
, “
Scalable generalized screening for high-order terms in the many-body expansion: Algorithm, open-source implementation, and demonstration
,”
J. Chem. Phys.
159
,
174801
(
2023
).
25.
D.
Broderick
,
P.
Bowling
, and
J.
Herbert
, Fragme∩t: Fragmentation code for the Herbert group. For the current version, see https://gitlab.com/john-herbert-group/fragment (accessed April 2024).
26.
E. F.
Bull-Vulpe
,
M.
Riera
,
A. W.
Götz
, and
F.
Paesani
, “
MB-Fit: Software infrastructure for data-driven many-body potential energy functions
,”
J. Chem. Phys.
155
,
124801
(
2021
).
27.
M.
Riera
,
C.
Knight
,
E. F.
Bull-Vulpe
,
X.
Zhu
,
H.
Agnew
,
D. G. A.
Smith
,
A. C.
Simmonett
, and
F.
Paesani
, “
MBX: A many-body energy and force calculator for data-driven many-body simulations
,”
J. Chem. Phys.
159
,
054802
(
2023
).
28.
K.
Focke
,
M.
De Santis
,
M.
Wolter
,
J. A.
Martinez B
,
V.
Vallet
,
A. S.
Pereira Gomes
,
M.
Olejniczak
, and
C. R.
Jacob
, “
Interoperable workflows by exchanging grid-based data between quantum-chemical program packages
,”
J. Chem. Phys.
160
,
162503
(
2024
).
29.
V.
Blum
,
R.
Asahi
,
J.
Autschbach
,
C.
Bannwarth
,
G.
Bihlmayer
,
S.
Blügel
,
L. A.
Burns
,
T. D.
Crawford
,
W.
Dawson
,
W. A.
de Jong
,
C.
Draxl
,
C.
Filippi
,
L.
Genovese
,
P.
Giannozzi
,
N.
Govind
,
S.
Hammes-Schiffer
,
J. R.
Hammond
,
B.
Hourahine
,
A.
Jain
,
Y.
Kanai
,
P. R. C.
Kent
,
A. H.
Larsen
,
S.
Lehtola
,
X.
Li
,
R.
Lindh
,
S.
Maeda
,
N.
Makri
,
J.
Moussa
,
T.
Nakajima
,
J. A.
Nash
,
M. J. T.
Oliveira
,
P. D.
Patel
,
G.
Pizzi
,
G.
Pourtois
,
B. P.
Pritchard
,
E.
Rabani
,
M.
Reiher
,
L.
Reining
,
X.
Ren
,
M.
Rossi
,
H. B.
Schlegel
,
N.
Seriani
,
L. V.
Slipchenko
,
A.
Thom
,
E. F.
Valeev
,
B.
Van Troeye
,
L.
Visscher
,
V.
Vlcek
,
H.-J.
Werner
,
D. B.
Williams-Young
, and
T.
Windus
, “
Roadmap on methods and software for electronic structure based simulations in chemistry and materials
,”
Electron. Struct.
(to be published) (
2024
).
30.
R.
Di Felice
,
M. L.
Mayes
,
R. M.
Richard
,
D. B.
Williams-Young
,
G. K.-L.
Chan
,
W. A.
de Jong
,
N.
Govind
,
M.
Head-Gordon
,
M. R.
Hermes
,
K.
Kowalski
,
X.
Li
,
H.
Lischka
,
K. T.
Mueller
,
E.
Mutlu
,
A. M. N.
Niklasson
,
M. R.
Pederson
,
B.
Peng
,
R.
Shepard
,
E. F.
Valeev
,
M.
van Schilfgaarde
,
B.
Vlaisavljevich
,
T. L.
Windus
,
S. S.
Xantheas
,
X.
Zhang
, and
P. M.
Zimmerman
, “
A perspective on sustainable computational chemistry software development and integration
,”
J. Chem. Theory Comput.
19
,
7056
7076
(
2023
).
31.
D. G. A.
Smith
,
D.
Altarawy
,
L. A.
Burns
,
M.
Welborn
,
L. N.
Naden
,
L.
Ward
,
S.
Ellis
,
B. P.
Pritchard
, and
T. D.
Crawford
, “
The MolSSI QCArchive project: An open-source platform to compute, organize, and share quantum chemistry data
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1491
(
2021
).
32.
B. P.
Britchard
,
D. G. A.
Smith
,
D.
Altarawy
,
M.
Welborn
, and
L.
Naden
(
2024
). “
QCFractal: A distributed compute and database platform for quantum chemistry
,” GitHub for the current version, see https://github.com/MolSSI/QCFractal
33.
D. G. A.
Smith
,
A. T.
Lolinco
,
Z. L.
Glick
,
J.
Lee
,
A.
Alenaizan
,
T. A.
Barnes
,
C. H.
Borca
,
R.
Di Remigio
,
D. L.
Dotson
,
S.
Ehlert
,
A. G.
Heide
,
M. F.
Herbst
,
J.
Hermann
,
C. B.
Hicks
,
J. T.
Horton
,
A. G.
Hurtado
,
P.
Kraus
,
H.
Kruse
,
S. J. R.
Lee
,
J. P.
Misiewicz
,
L. N.
Naden
,
F.
Ramezanghorbani
,
M.
Scheurer
,
J. B.
Schriber
,
A. C.
Simmonett
,
J.
Steinmetzer
,
J. R.
Wagner
,
L.
Ward
,
M.
Welborn
,
D.
Altarawy
,
J.
Anwar
,
J. D.
Chodera
,
A.
Dreuw
,
H. J.
Kulik
,
F.
Liu
,
T. J.
Martínez
,
D. A.
Matthews
,
H. F.
Schaefer
III
,
J.
Šponer
,
J. M.
Turney
,
L.-P.
Wang
,
N.
De Silva
,
R. A.
King
,
J. F.
Stanton
,
M. S.
Gordon
,
T. L.
Windus
,
C. D.
Sherrill
, and
L. A.
Burns
, “
Quantum chemistry common driver and databases (QCDB) and quantum chemistry engine (QCEngine): Automation and interoperability among computational chemistry programs
,”
J. Chem. Phys.
155
,
204801
(
2021
).
34.
Conda-forge community
, The Conda-forge project: Community-based software distribution built on the Conda package format and ecosystem,
2015
.
35.
D. G. A.
Smith
,
L. A.
Burns
,
S.
Lee
,
L.
Ward
, and
D. L.
Dotson
(
2024
). “
QCEngine: Quantum chemistry program executor and IO standardizer (QCSchema)
,” GitHub for the current version, see https://github.com/MolSSI/QCEngine
36.
F.
Ballesteros
,
J. A.
Tan
, and
K. U.
Lao
, “
An accurate and efficient fragmentation approach via the generalized many-body expansion for density matrices
,”
J. Chem. Phys.
159
,
074107
(
2023
).
37.
U.
Góra
,
R.
Podeszwa
,
W.
Cencek
, and
K.
Szalewicz
, “
Interaction energies of large clusters from many-body expansion
,”
J. Chem. Phys.
135
,
224102
(
2011
).
38.
R. M.
Richard
,
K. U.
Lao
, and
J. M.
Herbert
, “
Understanding the many-body expansion for large systems. I. Precision considerations
,”
J. Chem. Phys.
141
,
014108
(
2014
).
39.
B. H.
Wells
and
S.
Wilson
, “
Van der Waals interaction potentials: Many-body basis set superposition effects
,”
Chem. Phys. Lett.
101
,
429
434
(
1983
).
40.
P.
Valiron
and
I.
Mayer
, “
Hierarchy of counterpoise corrections for N-body clusters: Generalization of the Boys-Bernardi scheme
,”
Chem. Phys. Lett.
275
,
46
55
(
1997
).
41.
J.
Rezac
and
D. R.
Salahub
, “
Multilevel fragment-based approach (MFBA): A novel hybrid computational method for the study of large molecules
,”
J. Chem. Theory Comput.
6
,
91
99
(
2010
).
42.
G. J. O.
Beran
and
K.
Nanda
, “
Predicting organic crystal lattice energies with chemical accuracy
,”
J. Phys. Chem. Lett.
1
,
3480
3487
(
2010
).
43.
N. J.
Mayhall
and
K.
Raghavachari
, “
Molecules-in-molecules: An extrapolated fragment-based approach for accurate calculations on large molecules and materials
,”
J. Chem. Theory Comput.
7
,
1336
1343
(
2011
).
44.
J. C.
Howard
and
G. S.
Tschumper
, “
N-body:many-body QM:QM vibrational frequencies: Application to small hydrogen-bonded clusters
,”
J. Chem. Phys.
139
,
184113
(
2013
).
45.
J. C.
Howard
and
G. S.
Tschumper
, “
Benchmark structures and harmonic vibrational frequencies near the CCSD(T) complete basis set limit for small water clusters: (H2O)n=2,3,4,5,6
,”
J. Chem. Theory Comput.
11
,
2126
2136
(
2015
).
46.
S.
Colvin
,
E.
Jolibois
,
H.
Ramezani
,
A. G.
Badaracco
,
T.
Dorsey
,
D.
Montague
,
S.
Matveenko
,
M.
Trylesinski
,
S.
Runkle
,
D.
Hewitt
, and
A.
Hall
(
2024
). “
pydantic: Data parsing and validation using Python type hints
,” GitHub for the current version, see https://github.com/pydantic/pydantic
47.

Snippets 1 and 2 and Ref. 97 of Ref. 33 for an overview of the QCElemental Molecule object.

48.
C. R.
Harris
,
K. J.
Millman
,
S. J.
van der Walt
,
R.
Gommers
,
P.
Virtanen
,
D.
Cournapeau
,
E.
Wieser
,
J.
Taylor
,
S.
Berg
,
N. J.
Smith
,
R.
Kern
,
M.
Picus
,
S.
Hoyer
,
M. H.
van Kerkwijk
,
M.
Brett
,
A.
Haldane
,
J. F.
del Río
,
M.
Wiebe
,
P.
Peterson
,
P.
Gérard-Marchant
,
K.
Sheppard
,
T.
Reddy
,
W.
Weckesser
,
H.
Abbasi
,
C.
Gohlke
, and
T. E.
Oliphant
, “
Array programming with NumPy
,”
Nature
585
,
357
362
(
2020
).
49.
D. G. A.
Smith
,
L. A.
Burns
,
L.
Naden
, and
M.
Welborn
(
2024
). “
QCElemental: Periodic table, physical constants, and molecule parsing for quantum chemistry
,” GitHub for the current version, see https://github.com/MolSSI/QCElemental
50.
K. U.
Lao
,
K.-Y.
Liu
,
R. M.
Richard
, and
J. M.
Herbert
, “
Understanding the many-body expansion for large systems. II. Accuracy considerations
,”
J. Chem. Phys.
144
,
164105
(
2016
).
51.
A.
Heide
and
R. A.
King
(
2024
). “
optking: A Python version of the PSI4 geometry optimizer
,” GitHub for the current version, see https://github.com/psi-rking/optking
52.
L.-P.
Wang
and
C.
Song
, “
Geometry optimization made simple with translation and rotation coordinates
,”
J. Chem. Phys.
144
,
214108
(
2016
).
53.
L.-P.
Wang
,
H.
Park
,
D. G. A.
Smith
, and
Y.
Qiu
(
2024
). “
geomeTRIC: A geometry optimization code that includes the TRIC coordinate system
,” GitHub for the current version, see https://github.com/leeping/geomeTRIC
54.

Figure 4(b), the “6b” was optimized with CP, and the “4b” used Cfour58 backend. Otherwise, the computations used VMFC and NWChem as labeled.

55.
C. H.
Borca
,
B. W.
Bakr
,
L. A.
Burns
, and
C. D.
Sherrill
, “
CrystaLattE: Automated computation of lattice energies of organic crystals exploiting the many-body expansion to achieve dual-level parallelism
,”
J. Chem. Phys.
151
,
144103
(
2019
).
56.
C. H.
Borca
,
C. D.
Sherrill
,
Z. L.
Glick
,
P. M.
Nelson
, and
L. A.
Burns
(
2024
). “
CrystaLattE: Automating the calculation of crystal lattice energies
,” GitHub For the current version, see https://github.com/carlosborca/CrystaLattE
57.
P. M.
Nelson
and
C. D.
Sherrill
, “
Convergence of three-body energies in crystalline acetic acid, formamide, and imidazole
” (unpublished).
58.
D. A.
Matthews
,
L.
Cheng
,
M. E.
Harding
,
F.
Lipparini
,
S.
Stopkowicz
,
T.-C.
Jagau
,
P. G.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
, “
Coupled-cluster techniques for computational chemistry: The CFOUR program package
,”
J. Chem. Phys.
152
,
214108
(
2020
).
You do not currently have access to this content.