Developing numerical exact solvers for open quantum systems is a challenging task due to the non-perturbative and non-Markovian nature when coupling to structured environments. The Feynman–Vernon influence functional approach is a powerful analytical tool to study the dynamics of open quantum systems. Numerical treatments of the influence functional including the quasi-adiabatic propagator technique and the tensor-network-based time-evolving matrix product operator method have proven to be efficient in studying open quantum systems with bosonic environments. However, the numerical implementation of the fermionic path integral suffers from the Grassmann algebra involved. In this work, we present a detailed introduction to the Grassmann time-evolving matrix product operator method for fermionic open quantum systems. In particular, we introduce the concepts of Grassmann tensor, signed matrix product operator, and Grassmann matrix product state to handle the Grassmann path integral. Using the single-orbital Anderson impurity model as an example, we review the numerical benchmarks for structured fermionic environments for real-time nonequilibrium dynamics, real-time and imaginary-time equilibration dynamics, and its application as an impurity solver. These benchmarks show that our method is a robust and promising numerical approach to study strong coupling physics and non-Markovian dynamics. It can also serve as an alternative impurity solver to study strongly correlated quantum matter with dynamical mean-field theory.

1.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
2007
).
2.
I.
de Vega
and
D.
Alonso
, “
Dynamics of non-Markovian open quantum systems
,”
Rev. Mod. Phys.
89
,
015001
(
2017
).
3.
H.
Weimer
,
A.
Kshetrimayum
, and
R.
Orús
, “
Simulation methods for open quantum many-body systems
,”
Rev. Mod. Phys.
93
,
015008
(
2021
).
4.
W. G.
Unruh
, “
Maintaining coherence in quantum computers
,”
Phys. Rev. A
51
,
992
997
(
1995
).
5.
G. M.
Palma
,
K.-a.
Suominen
, and
A.
Ekert
, “
Quantum computers and dissipation
,”
Proc. R. Soc. A
452
,
567
584
(
1997
).
6.
A. O.
Caldeira
and
A. J.
Leggett
, “
Path integral approach to quantum Brownian motion
,”
Physica A
121
,
587
(
1983
).
7.
A.
Caldeira
and
A. J.
Leggett
, “
Quantum tunnelling in a dissipative system
,”
Ann. Phys.
149
,
374
(
1983
).
8.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
,
Cambridge
,
1995
).
9.
H.
Haug
and
A.-P.
Jauho
,
Quantum Kinetics in Transport and Optics of Semiconductors
(
Springer-Verlag
,
Berlin Heidelberg
,
2008
).
10.
D.
Ryndyk
,
Theory of Quantum Transport at Nanoscale
(
Springer International Publishing
,
Cham
,
2016
), Vol.
184
.
11.
G. T.
Landi
,
D.
Poletti
, and
G.
Schaller
, “
Nonequilibrium boundary-driven quantum systems: Models, methods, and properties
,”
Rev. Mod. Phys.
94
,
045006
(
2022
).
12.
A.
Georges
,
G.
Kotliar
,
W.
Krauth
, and
M. J.
Rozenberg
, “
Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions
,”
Rev. Mod. Phys.
68
,
13
(
1996
).
13.
S.
Popescu
,
A. J.
Short
, and
A.
Winter
, “
Entanglement and the foundations of statistical mechanics
,”
Nat. Phys.
2
,
754
758
(
2006
).
14.
S.
Goldstein
,
J. L.
Lebowitz
,
R.
Tumulka
, and
N.
Zanghì
, “
Canonical typicality
,”
Phys. Rev. Lett.
96
,
050403
(
2006
).
15.
L.
D’Alessio
,
Y.
Kafri
,
A.
Polkovnikov
, and
M.
Rigol
, “
From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics
,”
Adv. Phys.
65
,
239
362
(
2016
).
16.
H.-P.
Breuer
,
E.-M.
Laine
,
J.
Piilo
, and
B.
Vacchini
, “
Colloquium: Non-Markovian dynamics in open quantum systems
,”
Rev. Mod. Phys.
88
,
021002
(
2016
).
17.
L.
Li
,
M. J. W.
Hall
, and
H. M.
Wiseman
, “
Concepts of quantum non-Markovianity: A hierarchy
,”
Phys. Rep.
759
,
1
(
2018
).
18.
F. A.
Pollock
,
C.
Rodríguez-Rosario
,
T.
Frauenheim
,
M.
Paternostro
, and
K.
Modi
, “
Non-Markovian quantum processes: Complete framework and efficient characterization
,”
Phys. Rev. A
97
,
012127
(
2018
).
19.
S.
Denisov
,
T.
Laptyeva
,
W.
Tarnowski
,
D.
Chruściński
, and
K.
Życzkowski
, “
Universal spectra of random Lindblad operators
,”
Phys. Rev. Lett.
123
,
140403
(
2019
).
20.
G.
Akemann
,
M.
Kieburg
,
A.
Mielke
, and
T.
Prosen
, “
Universal signature from integrability to chaos in dissipative open quantum systems
,”
Phys. Rev. Lett.
123
,
254101
(
2019
).
21.
L.
,
P.
Ribeiro
, and
T.
Prosen
, “
Complex spacing ratios: A signature of dissipative quantum chaos
,”
Phys. Rev. X
10
,
021019
(
2020
).
22.
R.
Hamazaki
,
K.
Kawabata
,
N.
Kura
, and
M.
Ueda
, “
Universality classes of non-Hermitian random matrices
,”
Phys. Rev. Res.
2
,
023286
(
2020
).
23.
J.
Gemmer
,
M.
Michel
, and
G.
Mahler
,
Quantum Thermodynamics: Emergence of Thermodynamic Behavior Within Composite Quantum Systems
(
Springer
,
Berlin, Heidelberg
,
2004
), Vol.
657
.
24.
Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions
, edited by
F.
Binder
,
L. A.
Correa
,
C.
Gogolin
,
J.
Anders
, and
G.
Adesso
(
Springer International Publishing
,
Cham
,
2018
), Vol.
195
.
25.
S.
Deffner
and
S.
Campbell
,
Quantum Thermodynamics: An Introduction to the Thermodynamics of Quantum Information
(
Morgan & Claypool Publishers
,
2019
).
26.
P.
Talkner
and
P.
Hänggi
, “
Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical
,”
Rev. Mod. Phys.
92
,
041002
(
2020
).
27.
J.
Prior
,
A. W.
Chin
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Efficient simulation of strong system–environment interactions
,”
Phys. Rev. Lett.
105
,
050404
(
2010
).
28.
A. W.
Chin
,
Á.
Rivas
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials
,”
J. Math. Phys.
51
,
092109
(
2010
).
29.
D.
Tamascelli
,
A.
Smirne
,
J.
Lim
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Efficient simulation of finite-temperature open quantum systems
,”
Phys. Rev. Lett.
123
,
090402
(
2019
).
30.
T.
Lacroix
,
B.
Le Dé
,
A.
Riva
,
A. J.
Dunnett
, and
A. W.
Chin
, “
MPSDynamics.jl: Tensor network simulations for finite-temperature (non-Markovian) open quantum system dynamics
,”
J. Chem. Phys.
161
,
084116
(
2024
).
31.
I.
de Vega
and
M.-C.
Bañuls
, “
Thermofield-based chain-mapping approach for open quantum systems
,”
Phys. Rev. A
92
,
052116
(
2015
).
32.
C.
Guo
,
I.
de Vega
,
U.
Schollwöck
, and
D.
Poletti
, “
Stable-unstable transition for a Bose-Hubbard chain coupled to an environment
,”
Phys. Rev. A
97
,
053610
(
2018
).
33.
X.
Xu
,
J.
Thingna
,
C.
Guo
, and
D.
Poletti
, “
Many-body open quantum systems beyond Lindblad master equations
,”
Phys. Rev. A
99
,
012106
(
2019
).
34.
L.
Kohn
and
G. E.
Santoro
, “
Efficient mapping for Anderson impurity problems with matrix product states
,”
Phys. Rev. B
104
,
014303
(
2021
).
35.
L.
Kohn
and
G. E.
Santoro
, “
Quench dynamics of the Anderson impurity model at finite temperature using matrix product states: Entanglement and bath dynamics
,”
J. Stat. Mech.
2022
,
063102
.
36.
Y.
Tanimura
and
R.
Kubo
, “
Time evolution of a quantum system in contact with a nearly Gaussian-Markoffian noise bath
,”
J. Phys. Soc. Jpn.
58
,
101
114
(
1989
).
37.
J.
Jin
,
X.
Zheng
, and
Y.
Yan
, “
Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach
,”
J. Chem. Phys.
128
,
234703
(
2008
).
38.
Z.
Li
,
N.
Tong
,
X.
Zheng
,
D.
Hou
,
J.
Wei
,
J.
Hu
, and
Y.
Yan
, “
Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems
,”
Phys. Rev. Lett.
109
,
266403
(
2012
).
39.
X.
Dan
,
M.
Xu
,
J. T.
Stockburger
,
J.
Ankerhold
, and
Q.
Shi
, “
Efficient low-temperature simulations for fermionic reservoirs with the hierarchical equations of motion method: Application to the Anderson impurity model
,”
Phys. Rev. B
107
,
195429
(
2023
).
40.
Y.-T.
Huang
,
P.-C.
Kuo
,
N.
Lambert
,
M.
Cirio
,
S.
Cross
,
S.-L.
Yang
,
F.
Nori
, and
Y.-N.
Chen
, “
An efficient Julia framework for hierarchical equations of motion in open quantum systems
,”
Commun. Phys.
6
,
313
(
2023
).
41.
N.
Lambert
,
T.
Raheja
,
S.
Cross
,
P.
Menczel
,
S.
Ahmed
,
A.
Pitchford
,
D.
Burgarth
, and
F.
Nori
, “
QuTiP-BoFiN: A bosonic and fermionic numerical hierarchical-equations-of-motion library with applications in light-harvesting, quantum control, and single-molecule electronics
,”
Phys. Rev. Res.
5
,
013181
(
2023
).
42.
D.
Zhang
,
L.
Ye
,
J.
Cao
,
Y.
Wang
,
R.-X.
Xu
,
X.
Zheng
, and
Y.
Yan
, “
HEOM-QUICK2: A general-purpose simulator for fermionic many-body open quantum systems—An update
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
14
,
e1727
(
2024
).
43.
D. E.
Makarov
and
N.
Makri
, “
Path integrals for dissipative systems by tensor multiplication. Condensed phase quantum dynamics for arbitrarily long time
,”
Chem. Phys. Lett.
221
,
482
(
1994
).
44.
N.
Makri
, “
Numerical path integral techniques for long time dynamics of quantum dissipative systems
,”
J. Math. Phys.
36
,
2430
(
1995
).
45.
N. S.
Dattani
,
F. A.
Pollock
, and
D. M.
Wilkins
, “
Analytic influence functionals for numerical Feynman integrals in most open quantum systems
,”
Quantum Phys. Lett.
1
,
35
(
2012
).
46.
E.
Gull
,
A. J.
Millis
,
A. I.
Lichtenstein
,
A. N.
Rubtsov
,
M.
Troyer
, and
P.
Werner
, “
Continuous-time Monte Carlo methods for quantum impurity models
,”
Rev. Mod. Phys.
83
,
349
404
(
2011
).
47.
A.
Erpenbeck
,
E.
Gull
, and
G.
Cohen
, “
Quantum Monte Carlo method in the steady state
,”
Phys. Rev. Lett.
130
,
186301
(
2023
).
48.
B. L.
Hu
,
J. P.
Paz
, and
Y.
Zhang
, “
Quantum Brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise
,”
Phys. Rev. D
45
,
2843
2861
(
1992
).
49.
W.-M.
Zhang
,
P.-Y.
Lo
,
H.-N.
Xiong
,
M. W.-Y.
Tu
, and
F.
Nori
, “
General non-Markovian dynamics of open quantum systems
,”
Phys. Rev. Lett.
109
,
170402
(
2012
).
50.
J.
Schwinger
, “
Brownian motion of a quantum oscillator
,”
J. Math. Phys.
2
,
407
432
(
1961
).
51.
J.-S.
Wang
,
J.
Wang
, and
J. T.
, “
Quantum thermal transport in nanostructures
,”
Eur. Phys. J. B
62
,
381
404
(
2008
).
52.
G.
Stefanucci
and
R.
van Leeuwen
,
Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction
(
Cambridge University Press
,
Cambridge
,
2013
).
53.
J.-S.
Wang
,
B. K.
Agarwalla
,
H.
Li
, and
J.
Thingna
, “
Nonequilibrium Green’s function method for quantum thermal transport
,”
Front. Phys.
9
,
673
(
2013
).
54.
A. G.
Redfield
, “
On the theory of relaxation processes
,”
IBM J. Res. Dev.
1
,
19
31
(
1957
).
55.
C. H.
Fleming
and
N. I.
Cummings
, “
Accuracy of perturbative master equations
,”
Phys. Rev. E
83
,
031117
(
2011
).
56.
J.
Thingna
,
J.-S.
Wang
, and
P.
Hänggi
, “
Reduced density matrix for nonequilibrium steady states: A modified Redfield solution approach
,”
Phys. Rev. E
88
,
052127
(
2013
).
57.
X.
Xu
,
J.
Thingna
, and
J.-S.
Wang
, “
Finite coupling effects in double quantum dots near equilibrium
,”
Phys. Rev. B
95
,
035428
(
2017
).
58.
R.
Hartmann
and
W. T.
Strunz
, “
Accuracy assessment of perturbative master equations: Embracing nonpositivity
,”
Phys. Rev. A
101
,
012103
(
2020
).
59.
S.
Nakajima
, “
On quantum theory of transport phenomena: Steady diffusion
,”
Prog. Theor. Phys.
20
,
948
959
(
1958
).
60.
R.
Zwanzig
, “
Ensemble method in the theory of irreversibility
,”
J. Chem. Phys.
33
,
1338
1341
(
1960
).
61.
K. H.
Hughes
,
C. D.
Christ
, and
I.
Burghardt
, “
Effective-mode representation of non-Markovian dynamics: A hierarchical approximation of the spectral density. I. Application to single surface dynamics
,”
J. Chem. Phys.
131
,
024109
(
2009
).
62.
K. H.
Hughes
,
C. D.
Christ
, and
I.
Burghardt
, “
Effective-mode representation of non-Markovian dynamics: A hierarchical approximation of the spectral density. II. Application to environment-induced nonadiabatic dynamics
,”
J. Chem. Phys.
131
,
124108
(
2009
).
63.
R.
Martinazzo
,
B.
Vacchini
,
K. H.
Hughes
, and
I.
Burghardt
, “
Communication: Universal Markovian reduction of Brownian particle dynamics
,”
J. Chem. Phys.
134
,
011101
(
2011
).
64.
J.
Iles-Smith
,
A. G.
Dijkstra
,
N.
Lambert
, and
A.
Nazir
, “
Energy transfer in structured and unstructured environments: Master equations beyond the Born-Markov approximations
,”
J. Chem. Phys.
144
,
044110
(
2016
).
65.
N.
Anto-Sztrikacs
and
D.
Segal
, “
Capturing non-Markovian dynamics with the reaction coordinate method
,”
Phys. Rev. A
104
,
052617
(
2021
).
66.
T.
Becker
,
A.
Schnell
, and
J.
Thingna
, “
Canonically consistent quantum master equation
,”
Phys. Rev. Lett.
129
,
200403
(
2022
).
67.
G.
Schaller
and
T.
Brandes
, “
Preservation of positivity by dynamical coarse graining
,”
Phys. Rev. A
78
,
022106
(
2008
).
68.
G.
Schaller
,
P.
Zedler
, and
T.
Brandes
, “
Systematic perturbation theory for dynamical coarse-graining
,”
Phys. Rev. A
79
,
032110
(
2009
).
69.
B. M.
Garraway
, “
Nonperturbative decay of an atomic system in a cavity
,”
Phys. Rev. A
55
,
2290
2303
(
1997
).
70.
D.
Tamascelli
,
A.
Smirne
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Nonperturbative treatment of non-Markovian dynamics of open quantum systems
,”
Phys. Rev. Lett.
120
,
030402
(
2018
).
71.
N.
Lambert
,
S.
Ahmed
,
M.
Cirio
, and
F.
Nori
, “
Modelling the ultra-strongly coupled spin-boson model with unphysical modes
,”
Nat. Commun.
10
,
3721
(
2019
).
72.
F.
Chen
,
E.
Arrigoni
, and
M.
Galperin
, “
Markovian treatment of non-Markovian dynamics of open Fermionic systems
,”
New J. Phys.
21
,
123035
(
2019
).
73.
E.
Arrigoni
,
M.
Knap
, and
W.
von der Linden
, “
Nonequilibrium dynamical mean-field theory: An auxiliary quantum master equation approach
,”
Phys. Rev. Lett.
110
,
086403
(
2013
).
74.
A.
Dorda
,
M.
Nuss
,
W.
von der Linden
, and
E.
Arrigoni
, “
Auxiliary master equation approach to nonequilibrium correlated impurities
,”
Phys. Rev. B
89
,
165105
(
2014
).
75.
F.
Schwarz
,
M.
Goldstein
,
A.
Dorda
,
E.
Arrigoni
,
A.
Weichselbaum
, and
J.
von Delft
, “
Lindblad-driven discretized leads for nonequilibrium steady-state transport in quantum impurity models: Recovering the continuum limit
,”
Phys. Rev. B
94
,
155142
(
2016
).
76.
V.
Gorini
,
A.
Kossakowski
, and
E. C. G.
Sudarshan
, “
Completely positive dynamical semigroups of N-level systems
,”
J. Math. Phys.
17
,
821
825
(
1976
).
77.
G.
Lindblad
, “
On the generators of quantum dynamical semigroups
,”
Commun. Math. Phys.
48
,
119
130
(
1976
).
78.
D. E.
Makarov
and
N.
Makri
, “
Stochastic resonance and nonlinear response in double-quantum-well structures
,”
Phys. Rev. B
52
,
R2257
(
1995
).
79.
D. E.
Makarov
and
N.
Makri
, “
Control of dissipative tunneling dynamics by continuous wave electromagnetic fields: Localization and large-amplitude coherent motion
,”
Phys. Rev. E
52
,
5863
(
1995
).
80.
N.
Makri
and
L.
Wei
, “
Universal delocalization rate in driven dissipative two-level systems at high temperature
,”
Phys. Rev. E
55
,
2475
(
1997
).
81.
N.
Makri
, “
Stabilization of localized states in dissipative tunneling systems interacting with monochromatic fields
,”
J. Chem. Phys.
106
,
2286
(
1997
).
82.
M.
Grifoni
and
P.
Hänggi
, “
Driven quantum tunneling
,”
Phys. Rep.
304
,
229
(
1998
).
83.
A.
Strathearn
,
P.
Kirton
,
D.
Kilda
,
J.
Keeling
, and
B. W.
Lovett
, “
Efficient non-Markovian quantum dynamics using time-evolving matrix product operators
,”
Nat. Commun.
9
,
3322
(
2018
).
84.
N.
Ng
,
G.
Park
,
A. J.
Millis
,
G. K.-L.
Chan
, and
D. R.
Reichman
, “
Real-time evolution of Anderson impurity models via tensor network influence functionals
,”
Phys. Rev. B
107
,
125103
(
2023
).
85.
J.
Thoenniss
,
M.
Sonner
,
A.
Lerose
, and
D. A.
Abanin
, “
Efficient method for quantum impurity problems out of equilibrium
,”
Phys. Rev. B
107
,
L201115
(
2023
).
86.
J.
Thoenniss
,
A.
Lerose
, and
D. A.
Abanin
, “
Nonequilibrium quantum impurity problems via matrix-product states in the temporal domain
,”
Phys. Rev. B
107
,
195101
(
2023
).
87.
B.
Kloss
,
J.
Thoenniss
,
M.
Sonner
,
A.
Lerose
,
M. T.
Fishman
,
E. M.
Stoudenmire
,
O.
Parcollet
,
A.
Georges
, and
D. A.
Abanin
, “
Equilibrium quantum impurity problems via matrix product state encoding of the retarded action
,”
Phys. Rev. B
108
,
205110
(
2023
).
88.
G.
Park
,
N.
Ng
,
D. R.
Reichman
, and
G. K.-L.
Chan
, “
Tensor network influence functionals in the continuous-time limit: Connections to quantum embedding, bath discretization, and higher-order time propagation
,”
Phys. Rev. B
110
,
045104
(
2024
).
89.
R.
Chen
,
X.
Xu
, and
C.
Guo
, “
Grassmann time-evolving matrix product operators for quantum impurity models
,”
Phys. Rev. B
109
,
045140
(
2024
).
90.
R.
Chen
,
X.
Xu
, and
C.
Guo
, “
Grassmann time-evolving matrix product operators for equilibrium quantum impurity problems
,”
New J. Phys.
26
,
013019
(
2024
).
91.
R.
Chen
,
X.
Xu
, and
C.
Guo
, “
Real-time impurity solver using Grassmann time-evolving matrix product operators
,”
Phys. Rev. B
109
,
165113
(
2024
).
92.
R. P.
Feynman
and
F. L.
Vernon
, “
The theory of a general quantum system interacting with a linear dissipative system
,”
Ann. Phys.
24
,
118
(
1963
).
93.
J. W.
Negele
and
H.
Orland
,
Quantum Many-Particle Systems
(
Westview Press
,
1998
).
94.
L. V.
Keldysh
, “
Diagram technique for non-equilibrium processes
,”
Sov. Phys. JETP
20
,
1018
(
1965
).
95.
E. M.
Lifshitz
and
L. P.
Pitaevskii
,
Course of Theoretical Physics Volume 10: Physical Kinetics
(
Elsevier
,
1981
).
96.
A.
Kamenev
and
A.
Levchenko
, “
Keldysh technique and non-linear σ-model: Basic principles and applications
,”
Adv. Phys.
58
,
197
319
(
2009
).
97.
K.
Dong
and
N.
Makri
, “
Optimizing terahertz emission from double quantum wells
,”
Chem. Phys.
296
,
273
(
2004
).
98.
K.
Dong
and
N.
Makri
, “
Quantum stochastic resonance in the strong-field limit
,”
Phys. Rev. A
70
,
042101
(
2004
).
99.
P.
Nalbach
and
M.
Thorwart
, “
Landau-Zener transitions in a dissipative environment: Numerically exact results
,”
Phys. Rev. Lett.
103
,
220401
(
2009
).
100.
M.
Thorwart
,
P.
Reimann
, and
P.
Hänggi
, “
Iterative algorithm versus analytic solutions of the parametrically driven dissipative quantum harmonic oscillator
,”
Phys. Rev. E
62
,
5808
(
2000
).
101.
G.
Ilk
and
N.
Makri
, “
Real time path integral methods for a system coupled to an anharmonic bath
,”
J. Chem. Phys.
101
,
6708
(
1994
).
102.
N.
Makri
, “
The linear response approximation and its lowest order corrections: An influence functional approach
,”
J. Phys. Chem. B
103
,
2823
(
1999
).
103.
J.
Shao
and
N.
Makri
, “
Iterative path integral formulation of equilibrium correlation functions for quantum dissipative systems
,”
J. Chem. Phys.
116
,
507
514
(
2002
).
104.
U.
Schollwöck
, “
The density-matrix renormalization group
,”
Rev. Mod. Phys.
77
,
259
315
(
2005
).
105.
U.
Schollwöck
, “
The density-matrix renormalization group in the age of matrix product states
,”
Ann. Phys.
326
,
96
192
(
2011
).
106.
R.
Orús
, “
A practical introduction to tensor networks: Matrix product states and projected entangled pair states
,”
Ann. Phys.
349
,
117
158
(
2014
).
107.
F.
Costa
and
S.
Shrapnel
, “
Quantum causal modelling
,”
New J. Phys.
18
,
063032
(
2016
).
108.
F. A.
Pollock
and
K.
Modi
, “
Tomographically reconstructed master equations for any open quantum dynamics
,”
Quantum
2
,
76
(
2018
).
109.
M. R.
Jørgensen
and
F. A.
Pollock
, “
Exploiting the causal tensor network structure of quantum processes to efficiently simulate non-Markovian path integrals
,”
Phys. Rev. Lett.
123
,
240602
(
2019
).
110.
M. R.
Jørgensen
and
F. A.
Pollock
, “
Discrete memory kernel for multitime correlations in non-Markovian quantum processes
,”
Phys. Rev. A
102
,
052206
(
2020
).
111.
Y.-F.
Chiu
,
A.
Strathearn
, and
J.
Keeling
, “
Numerical evaluation and robustness of the quantum mean-force Gibbs state
,”
Phys. Rev. A
106
,
012204
(
2022
).
112.
G. E.
Fux
,
D.
Kilda
,
B. W.
Lovett
, and
J.
Keeling
, “
Tensor network simulation of chains of non-Markovian open quantum systems
,”
Phys. Rev. Res.
5
,
033078
(
2023
).
113.
D.
Gribben
,
A.
Strathearn
,
G. E.
Fux
,
P.
Kirton
, and
B. W.
Lovett
, “
Using the environment to understand non-Markovian open quantum systems
,”
Quantum
6
,
847
(
2022
).
114.
D.
Gribben
,
D. M.
Rouse
,
J.
Iles-Smith
,
A.
Strathearn
,
H.
Maguire
,
P.
Kirton
,
A.
Nazir
,
E. M.
Gauger
, and
B. W.
Lovett
, “
Exact dynamics of nonadditive environments in non-Markovian open quantum systems
,”
PRX Quantum
3
,
010321
(
2022
).
115.
F.
Otterpohl
,
P.
Nalbach
, and
M.
Thorwart
, “
Hidden phase of the spin-boson model
,”
Phys. Rev. Lett.
129
,
120406
(
2022
).
116.
G. E.
Fux
,
E. P.
Butler
,
P. R.
Eastham
,
B. W.
Lovett
, and
J.
Keeling
, “
Efficient exploration of Hamiltonian parameter space for optimal control of non-Markovian open quantum systems
,”
Phys. Rev. Lett.
126
,
200401
(
2021
).
117.
R.
Chen
and
X.
Xu
, “
Non-Markovian effects in stochastic resonance in a two-level system
,”
Eur. Phys. J. Plus
138
,
194
(
2023
).
118.
M.
Popovic
,
M. T.
Mitchison
,
A.
Strathearn
,
B. W.
Lovett
,
J.
Goold
, and
P. R.
Eastham
, “
Quantum heat statistics with time-evolving matrix product operators
,”
PRX Quantum
2
,
020338
(
2021
).
119.
R.
Chen
, “
Heat current in non-Markovian open systems
,”
New J. Phys.
25
,
033035
(
2023
).
120.
E.
Ye
and
G. K.-L.
Chan
, “
Constructing tensor network influence functionals for general quantum dynamics
,”
J. Chem. Phys.
155
,
044104
(
2021
).
121.
A.
Bose
, “
Pairwise connected tensor network representation of path integrals
,”
Phys. Rev. B
105
,
024309
(
2022
).
122.
M.
Cygorek
,
J.
Keeling
,
B. W.
Lovett
, and
E. M.
Gauger
, “
Sublinear scaling in non-Markovian open quantum systems simulations
,”
Phys. Rev. X
14
,
011010
(
2024
).
123.
V.
Link
,
H.-H.
Tu
, and
W. T.
Strunz
, “
Open quantum system dynamics from infinite tensor network contraction
,”
Phys. Rev. Lett.
132
,
200403
(
2024
).
124.
D.
Segal
,
A. J.
Millis
, and
D. R.
Reichman
, “
Numerically exact path-integral simulation of nonequilibrium quantum transport and dissipation
,”
Phys. Rev. B
82
,
205323
(
2010
).
125.
D.
Segal
,
A. J.
Millis
, and
D. R.
Reichman
, “
Nonequilibrium transport in quantum impurity models: Exact path integral simulations
,”
Phys. Chem. Chem. Phys.
13
,
14378
14386
(
2011
).
126.
L.
Simine
and
D.
Segal
, “
Path-integral simulations with fermionic and bosonic reservoirs: Transport and dissipation in molecular electronic junctions
,”
J. Chem. Phys.
138
,
214111
(
2013
).
127.
R.
Chen
and
X.
Xu
, “
Dissipative features of the driven spin-fermion system
,”
Phys. Rev. B
100
,
115437
(
2019
).
128.
R.
Chen
, “
Landau-Zener transitions in a fermionic dissipative environment
,”
Phys. Rev. B
101
,
125426
(
2020
).
129.
R.
Blankenbecler
,
D. J.
Scalapino
, and
R. L.
Sugar
, “
Monte Carlo calculations of coupled boson-fermion systems. I
,”
Phys. Rev. D
24
,
2278
(
1981
).
130.
I.
Klich
, “
Quantum noise
,” in
Mesoscopic Physics
, edited by
Y. V.
Nazarov
(
Springer Netherlands
,
2003
), pp.
397
402
.
131.
D. A.
Abanin
and
L. S.
Levitov
, “
Tunable fermi-edge resonance in an open quantum dot
,”
Phys. Rev. Lett.
93
,
126802
(
2004
).
132.
D. A.
Abanin
and
L. S.
Levitov
, “
Fermi-edge resonance and tunneling in nonequilibrium electron gas
,”
Phys. Rev. Lett.
94
,
186803
(
2005
).
133.
L.
Fidkowski
and
A.
Kitaev
, “
Topological phases of fermions in one dimension
,”
Phys. Rev. B
83
,
075103
(
2011
).
134.
N.
Bultinck
,
D. J.
Williamson
,
J.
Haegeman
, and
F.
Verstraete
, “
Fermionic matrix product states and one-dimensional topological phases
,”
Phys. Rev. B
95
,
075108
(
2017
).
135.
Q.
Mortier
,
L.
Devos
,
L.
Burgelman
,
B.
Vanhecke
,
N.
Bultinck
,
F.
Verstraete
,
J.
Haegeman
, and
L.
Vanderstraeten
, “
Fermionic tensor network methods
,” arXiv:2404.14611 (
2024
).
136.
Z.-C.
Gu
, “
Efficient simulation of Grassmann tensor product states
,”
Phys. Rev. B
88
,
115139
(
2013
).
137.
Y.
Yoshimura
,
Y.
Kuramashi
,
Y.
Nakamura
,
S.
Takeda
, and
R.
Sakai
, “
Calculation of fermionic Green functions with Grassmann higher-order tensor renormalization group
,”
Phys. Rev. D
97
,
054511
(
2018
).
138.
S.
Akiyama
and
D.
Kadoh
, “
More about the Grassmann tensor renormalization group
,”
J. High Energy Phys.
2021
,
188
.
139.
P.
Jordan
and
E.
Wigner
, “
Über das Paulische Äquivalenzverbot
,”
Z. Phys.
47
,
631
651
(
1928
).
140.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
W.
Zwerger
, “
Dynamics of the dissipative two-state system
,”
Rev. Mod. Phys.
59
,
1
(
1987
).
141.
G. D.
Mahan
,
Many-Particle Physics
, 3rd ed. (
Springer
,
2000
).
142.
A.
Strathearn
,
Modelling Non-Markovian Quantum Systems Using Tensor Networks
(
Springer International Publishing
,
Cham, Switzerland
,
2020
).
143.
C.
Guo
and
R.
Chen
, “
Efficient construction of the Feynman-Vernon influence functional as matrix product states
,”
SciPost Phys. Core
7
,
063
(
2024
).
144.
C.
Guo
and
R.
Chen
, “
Infinite grassmann time-evolving matrix product operator method for zero-temperature equilibrium quantum impurity problems
,”
Phys. Rev. B
110
,
165119
(
2024
).
145.
R.
Chen
and
C.
Guo
, “
Solving quantum impurity problems on the l-shaped Kadanoff-Baym contour
,”
Phys. Rev. B
110
,
165114
(
2024
).
146.
C.
Guo
and
R.
Chen
, “
Infinite Grassmann time-evolving matrix product operator method in the steady state
,”
Phys. Rev. B
110
,
045106
(
2024
).
147.
C.
Bertrand
,
S.
Florens
,
O.
Parcollet
, and
X.
Waintal
, “
Reconstructing nonequilibrium regimes of quantum many-body systems from the analytical structure of perturbative expansions
,”
Phys. Rev. X
9
,
041008
(
2019
).
148.
F. A.
Wolf
,
A.
Go
,
I. P.
McCulloch
,
A. J.
Millis
, and
U.
Schollwöck
, “
Imaginary-time matrix product state impurity solver for dynamical mean-field theory
,”
Phys. Rev. X
5
,
041032
(
2015
).
149.
J.
Fei
,
C.-N.
Yeh
, and
E.
Gull
, “
Nevanlinna analytical continuation
,”
Phys. Rev. Lett.
126
,
056402
(
2021
).
150.
L. P.
Kadanoff
and
G.
Baym
,
Quantum Statistical Mechnics
(
W. A. Benjamin
,
New York
,
1962
).
151.
H.
Aoki
,
N.
Tsuji
,
M.
Eckstein
,
M.
Kollar
,
T.
Oka
, and
P.
Werner
, “
Nonequilibrium dynamical mean-field theory and its applications
,”
Rev. Mod. Phys.
86
,
779
(
2014
).
You do not currently have access to this content.