A central paradigm of polymer physics states that chains in melts behave like random walks as intra- and interchain interactions effectively cancel each other out. Likewise, θ-chains, i.e., chains at the transition from a swollen coil to a globular phase, are also thought to behave like ideal chains, as attractive forces are counterbalanced by repulsive entropic contributions. While the simple mapping to an equivalent Kuhn chain works rather well in most scenarios with corrections to scaling, random walks do not accurately capture the topology and knots, particularly for flexible chains. In this paper, we demonstrate with Monte Carlo and molecular dynamics simulations that chains in polymer melts and θ-chains not only agree on a structural level for a range of stiffnesses but also topologically. They exhibit similar knotting probabilities and knot sizes, both of which are not captured by ideal chain representations. This discrepancy comes from the suppression of small knots in real chains, which is strongest for very flexible chains because excluded volume effects are still active locally and become weaker with increasing semiflexibility. Our findings suggest that corrections to ideal behavior are indeed similar for the two scenarios of real chains and that the structure and topology of a chain in a melt can be approximately reproduced by a corresponding θ-chain.

1.
B.
Alberts
,
R.
Heald
,
A.
Johnson
,
D.
Morgan
, and
M.
Raff
,
Molecular Biology of the Cell
(
Norton and Company
,
2022
).
2.
P. J.
Flory
,
Statistical Mechanics of Chain Molecules
(
Wiley
,
1969
).
3.
P.-G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
1979
).
4.
M.
Doi
and
S.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
New York
,
1986
).
5.
M.
Rubinstein
and
R.
Colby
,
Polymer Physics
(
Oxford University Press
,
Oxford
,
2003
).
6.
Z.-G.
Wang
, “
50th anniversary perspective: Polymer conformation—A pedagogical review
,”
Macromolecules
50
,
9073
(
2017
).
7.
O.
Kratky
and
G.
Porod
, “
Röntgenuntersuchung gelöster fadenmoleküle
,”
Recl. Trav. Chim. Pays-Bas
68
,
1106
1122
(
1949
).
8.
J.
Marko
and
E.
Siggia
, “
Stretching DNA
,”
Macromolecules
28
,
8759
8770
(
1995
).
9.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
2017
).
10.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
(
Academic Press
,
2023
).
11.
D. P.
Landau
and
K.
Binder
,
Computer Simulation of Liquids
(
Cambridge University Press
,
2014
).
12.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
1092
(
1953
).
13.
F.
Wall
,
L.
Hiller
, and
D.
Wheeler
, “
Statistical computation of mean dimensions of macromolecules. I
,”
J. Chem. Phys.
22
,
1036
1041
(
1954
).
14.
M.
Rosenbluth
and
A.
Rosenbluth
, “
Monte Carlo calculation of the average extension of molecular chains
,”
J. Chem. Phys.
23
,
356
359
(
1955
).
15.
M.
Laso
,
J.
de Pablo
, and
U.
Suter
, “
Simulation of phase equilibria for chain molecules
,”
J. Chem. Phys.
97
,
2817
2819
(
1992
).
16.
J.
Siepmann
and
D.
Frenkel
, “
Configurational bias Monte Carlo: A new sampling scheme for flexible chains
,”
Mol. Phys.
75
,
59
70
(
1992
).
17.
P.
Grassberger
, “
Pruned-enriched Rosenbluth method: Simulations of θ polymers of chain length up to 1 000 000
,”
Phys. Rev. E
56
,
3682
3693
(
1997
).
18.
M.
Mansfield
, “
Monte Carlo studies of polymer chain dimensions in the melt
,”
J. Chem. Phys.
77
,
1554
1559
(
1982
).
19.
O.
Olaj
and
W.
Lantschbauer
, “
Simulation of chain arrangement in bulk polymer, 1. Chain dimensions and distribution of the end‐to‐end distance
,”
Die Makromol. Chem., Rapid Commun.
3
,
847
858
(
1982
).
20.
R.
Auhl
,
R.
Everaers
,
G. S.
Grest
,
K.
Kremer
, and
S. J.
Plimpton
, “
Equilibration of long chain polymer melts in computer simulations
,”
J. Chem. Phys.
119
,
12718
12728
(
2003
).
21.
D.
Reith
and
P.
Virnau
, “
Implementation and performance analysis of bridging Monte Carlo moves for off-lattice single chain polymers in globular states
,”
Comput. Phys. Commun.
181
,
800
805
(
2010
).
22.
M.
Lal
, “
Monte Carlo computer simulation of chain molecules. I
,”
Mol. Phys.
17
,
57
64
(
1969
).
23.
N.
Madras
and
A. D.
Sokal
, “
The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk
,”
J. Stat. Phys.
50
,
109
186
(
1988
).
24.
N.
Clisby
, “
Efficient implementation of the pivot algorithm for self-avoiding walks
,”
J. Stat. Phys.
140
,
349
392
(
2010
).
25.
J.
Hager
and
L.
Schäfer
, “
θ-point behavior of diluted polymer solutions: Can one observe the universal logarithmic corrections predicted by field theory?
,”
Phys. Rev. E
60
,
2071
2085
(
1999
).
26.
J.
Wittmer
,
H.
Meyer
,
J.
Baschnagel
,
A.
Johner
,
S.
Obukhov
,
L.
Mattioni
,
M.
Müller
, and
A. N.
Semenov
, “
Long range bond-bond correlations in dense polymer solutions
,”
Phys. Rev. Lett.
93
,
147801
(
2004
).
27.
J.
Wittmer
,
P.
Beckrich
,
A.
Johner
,
A.
Semenov
,
S.
Obukhov
,
H.
Meyer
, and
J.
Baschnagel
, “
Why polymer chains in a melt are not random walks
,”
Europhys. Lett.
77
,
56003
(
2007
).
28.
J.
Wittmer
,
A.
Cavallo
,
H.
Xu
,
J.
Zabel
,
P.
Polińska
,
N.
Schulmann
,
H.
Meyer
,
J.
Farago
,
A.
Johner
,
S.
Obukhov
, and
J.
Baschnagel
, “
Scale-free static and dynamical correlations in melts of monodisperse and flory-distributed homopolymers: A review of recent bond-fluctuation model studies
,”
J. Stat. Phys.
145
,
1017
1126
(
2011
).
29.
D.
Shirvanyants
,
S.
Panyukov
,
Q.
Liao
, and
M.
Rubinstein
, “
Long-range correlations in a polymer chain due to its connectivity
,”
Macromolecules
41
,
1475
1485
(
2008
).
30.
P.
Beckrich
,
A.
Johner
,
A. N.
Semenov
,
S. P.
Obukhov
,
H.
Benoit
, and
J.
Wittmer
, “
Intramolecular form factor in dense polymer systems: Systematic deviations from the Debye formula
,”
Macromolecules
40
,
3805
3814
(
2007
).
31.
P.
Zhang
,
N. M.
Alsaifi
, and
Z.-G.
Wang
, “
Revisiting the θ point
,”
Macromolecules
53
,
10409
10420
(
2020
).
32.
L.
Schäfer
,
Excluded Volume Effects in Polymer Solutions
(
Springer-Verlag
,
1999
).
33.
F. C.
Rieger
and
P.
Virnau
, “
A Monte Carlo study of knots in long double-stranded DNA chains
,”
PLOS Comput. Biol.
12
,
e1005029
(
2016
).
34.
M.
Marenz
and
W.
Janke
, “
Knots as a topological order parameter for semiflexible polymers
,”
Phys. Rev. Lett.
116
,
128301
(
2016
).
35.
J.
Zierenberg
,
M.
Marenz
, and
W.
Janke
, “
Dilute semiflexible polymers with attraction: Collapse, folding and aggregation
,”
Polymers
8
,
333
(
2016
).
36.
H.
Meyer
,
E.
Horwath
, and
P.
Virnau
, “
Mapping onto ideal chains overestimates self-entanglements in polymer melts
,”
ACS Macro Lett.
7
,
757
761
(
2018
).
37.
S.
Wettermann
,
R.
Datta
, and
P.
Virnau
, “
Influence of ionic conditions on knotting in a coarse-grained model for DNA
,”
Front. Chem.
10
,
1096014
(
2023
).
38.
L.
Tubiana
,
G. P.
Alexander
,
A.
Barbensi
,
D.
Buck
,
J. H. E.
Cartwright
,
M.
Chwastyk
,
M.
Cieplak
,
I.
Coluzza
,
S.
Copar
,
D. J.
Craik
,
M.
Di Stefano
,
R.
Everaers
,
P. F. N.
Faisca
,
F.
Ferrari
,
A.
Giacometti
,
D.
Goundaroulis
,
E.
Haglund
,
Y.-M.
Hou
,
N.
Ilieva
,
S. E.
Jackson
,
A.
Japaridze
,
N.
Kaplan
,
A. R.
Klotz
,
H.
Li
,
C. N.
Likos
,
E.
Locatelli
,
T.
Lopez-Leon
,
T.
Machon
,
C.
Micheletti
,
D.
Michieletto
,
A.
Niemi
,
W.
Niemyska
,
S.
Niewieczerzal
,
F.
Nitti
,
E.
Orlandini
,
S.
Pasquali
,
A. P.
Perlinska
,
R.
Podgornik
,
R.
Potestio
,
N. M.
Pugno
,
M.
Ravnik
,
R.
Ricca
,
C. M.
Rohwer
,
A.
Rosa
,
J.
Smrek
,
A.
Souslov
,
A.
Stasiak
,
D.
Steer
,
J.
Sulkowska
,
P.
Sulkowski
,
D. W. L.
Sumners
,
C.
Svaneborg
,
P.
Szymczak
,
T.
Tarenzi
,
R.
Travasso
,
P.
Virnau
,
D.
Vlassopoulos
,
P.
Ziherl
, and
S.
Zumer
, “
Topology in soft and biological matter
,”
Phys. Rep.
1075
,
1
137
(
2024
).
39.
A. Y.
Grosberg
, “
A few notes about polymer knots
,”
Polym. Sci. Ser. A
51
,
70
79
(
2009
).
40.
C.
Micheletti
,
D.
Marenduzzo
, and
E.
Orlandini
, “
Polymers with spatial or topological constraints: Theoretical and computational results
,”
Phys. Rep.
504
,
1
73
(
2011
).
41.
L.
Dai
,
C. B.
Renner
, and
P. S.
Doyle
, “
Origin of metastable knots in single flexible chains
,”
Phys. Rev. Lett.
114
,
037801
(
2015
).
42.
J.
Zhang
,
H.
Meyer
,
P.
Virnau
, and
K. C.
Daoulas
, “
Can soft models describe polymer knots?
,”
Macromolecules
53
,
10475
10486
(
2020
).
43.
L.
Tubiana
,
H.
Kobayashi
,
R.
Potestio
,
B.
Dünweg
,
K.
Kremer
,
P.
Virnau
, and
K.
Daoulas
, “
Comparing equilibration schemes of high-molecular-weight polymer melts with topological indicators
,”
J. Phys.: Condens. Matter
33
,
204003
(
2021
).
44.
G. S.
Grest
and
K.
Kremer
, “
Molecular dynamics simulation for polymers in the presence of a heat bath
,”
Phys. Rev. A
33
,
3628
3631
(
1986
).
45.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
46.
S.
Majumder
,
J.
Zierenberg
, and
W.
Janke
, “
Kinetics of polymer collapse: Effect of temperature on cluster growth and aging
,”
Soft Matter
13
,
1276
1290
(
2017
).
47.
A.
Milchev
,
W.
Paul
, and
K.
Binder
, “
Off-lattice Monte Carlo simulation of dilute and concentrated polymer solutions under theta conditions
,”
J. Chem. Phys.
99
,
4786
4798
(
1993
).
48.
L.
Tubiana
,
E.
Orlandini
, and
C.
Micheletti
, “
Probing the entanglement and locating knots in ring polymers: A comparative study of different arc closure schemes a comparative study of different arc closure schemes
,”
Prog. Theor. Phys. Suppl.
191
,
192
204
(
2011
).
49.
C. C.
Adams
,
The Knot Book
(
American Mathematical Society
,
1994
).
50.
M.
Mansfield
, “
Fit to be tied
,”
Nat. Struct. Biol.
4
,
166
167
(
1997
).
51.
P.
Virnau
,
L. A.
Mirny
, and
M.
Kardar
, “
Intricate knots in proteins: Function and evolution
,”
PLOS Comput. Biol.
2
,
e122
e126
(
2006
).
52.
D.
Bölinger
,
J. I.
Sułkowska
,
H.-P.
Hsu
,
L. A.
Mirny
,
M.
Kardar
,
J. N.
Onuchic
, and
P.
Virnau
, “
A stevedore’s protein knot
,”
PLOS Comput. Biol.
6
,
e1000731
e1000736
(
2010
).
53.
P.
Virnau
, “
Detection and visualization of physical knots in macromolecules
,”
Phys. Procedia
6
,
117
125
(
2010
).
54.
P.
Virnau
,
Y.
Kantor
, and
M.
Kardar
, “
Knots in globule and coil phases of a model polyethylene
,”
J. Am. Chem. Soc.
127
,
15102
15106
(
2005
).
55.
J.
Wittmer
,
P.
Beckrich
,
H.
Meyer
,
A.
Cavallo
,
A.
Johner
, and
J.
Baschnagel
, “
Intramolecular long-range correlations in polymer melts: The segmental size distribution and its moments
,”
Phys. Rev. E
76
,
011803
(
2007
).
56.
C. C.
Hua
and
J. D.
Schieber
, “
Segment connectivity, chain-length breathing, segmental stretch, and constraint release in reptation models. I. Theory and single-step strain predictions
,”
J. Chem. Phys.
109
,
10018
10027
(
1998
).
57.
Y.
Masubuchi
,
J. I.
Takimoto
,
K.
Koyama
,
G.
Ianniruberto
,
G.
Marrucci
, and
F.
Greco
, “
Brownian simulations of a network of reptating primitive chains
,”
J. Chem. Phys.
115
,
4387
4394
(
2001
).
58.
A.
Likhtman
, “
Single-chain slip-link model of entangled Polymers: Simultaneous description of neutron Spin–Echo, rheology, and diffusion
,”
Macromolecules
38
,
6128
6139
(
2005
).
59.
V.
Chappa
,
D.
Morse
,
A.
Zippelius
, and
M.
Müller
, “
Translationally invariant slip-spring model for entangled polymer dynamics
,”
Phys. Rev. Lett.
109
,
148302
(
2012
).
60.
J.
Schneider
,
F.
Fleck
,
H. A.
Karimi-Varzaneh
, and
F.
Müller-Plathe
, “
Simulation of elastomers by slip-spring dissipative particle dynamics
,”
Macromolecules
54
,
5155
5166
(
2021
).
61.
G.
Megariotis
,
G. G.
Vogiatzis
,
A. P.
Sgouros
, and
D. N.
Theodorou
, “
Slip spring-based mesoscopic simulations of polymer networks: Methodology and the corresponding computational code
,”
Polymers
10
,
1156
(
2018
).
You do not currently have access to this content.