We study microbubbles (MBs) in aqueous electrolyte solutions and show that increasing the salt concentration slows down the kinetics of MB dissolution. We modified the Epstein–Plesset theory and experimented with NaCl aqueous solutions to estimate the MB effective surface charge and to compare it with predictions from the modified Poisson–Boltzmann theory. Our results reveal a mechanism responsible for the change in the dissolution of MBs in aqueous electrolyte solutions, with implications for emerging fields ranging from physics of solutions to soft and biological matter.
REFERENCES
1.
B.
Dollet
, P.
Marmottant
, and V.
Garbin
, “Bubble dynamics in soft and biological matter
,” Annu. Rev. Fluid Mech.
51
, 331
–355
(2019
).2.
F.
Struyven
, M.
Sellier
, and P.
Mandin
, “Review: Interactions between electrogenerated bubbles and microfluidic phenomena
,” Int. J. Hydrogen Energy
48
, 32607
–32630
(2023
).3.
A. V.
Postnikov
, I. V.
Uvarov
, M. V.
Lokhanin
, and V. B.
Svetovoy
, “Electrically controlled cloud of bulk nanobubbles in water solutions
,” PLoS One
12
, e0181727
(2017
).4.
V. B.
Svetovoy
, A. V.
Prokaznikov
, A. V.
Postnikov
, I. V.
Uvarov
, and G.
Palasantzas
, “Explosion of microbubbles generated by the alternating polarity water electrolysis
,” Energies
13
, 20
(2019
).5.
I. V.
Uvarov
, P. S.
Shlepakov
, A. E.
Melenev
, K.
Ma
, V. B.
Svetovoy
, and G. J. M.
Krijnen
, “A peristaltic micropump based on the fast electrochemical actuator: Design, fabrication, and preliminary testing
,” Actuators
10
, 62
(2021
).6.
V. B.
Svetovoy
, “Spontaneous chemical reactions between hydrogen and oxygen in nanobubbles
,” Curr. Opin. Colloid Interface Sci.
52
, 101423
(2021
).7.
K.
Fan
, Z.
Huang
, H.
Lin
, L.
Shen
, C.
Gao
, G.
Zhou
, J.
Hu
, H.
Yang
, and F.
Xu
, “Effects of micro-/nanobubble on membrane antifouling performance and the mechanism insights
,” J. Cleaner Prod.
376
, 134331
(2022
).8.
M.
Dong
, G.
Wang
, X.
Zhang
, D.
Tan
, J. P. K.
D
, J.
Ren
, H.
Colorado
, H.
Hou
, Z.
Toktarbay
, and Z.
Guo
, “An overview of polymer foaming assisted by supercritical fluid
,” Adv. Compos. Hybrid Mater.
6
, 207
(2023
).9.
K. R.
Marcelino
, L.
Ling
, S.
Wongkiew
, H. T.
Nhan
, K. C.
Surendra
, T.
Shitanaka
, H.
Lu
, and S. K.
Khanal
, “Nanobubble technology applications in environmental and agricultural systems: Opportunities and challenges
,” Crit. Rev. Environ. Sci. Technol.
53
, 1378
–1403
(2022
).10.
T. R.
Porter
, S. L.
Mulvagh
, S. S.
Abdelmoneim
, H.
Becher
, J. T.
Belcik
, M.
Bierig
, J.
Choy
, N.
Gaibazzi
, L. D.
Gillam
, R.
Janardhanan
, S.
Kutty
, H.
Leong-Poi
, J. R.
Lindner
, M. L.
Main
, W.
Mathias
, M. M.
Park
, R.
Senior
, and F.
Villanueva
, “Clinical applications of ultrasonic enhancing agents in echocardiography: 2018 American society of echocardiography guidelines update
,” J. Am. Soc. Echocardiography
31
, 241
–274
(2018
).11.
M.
Ashokkumar
, J.
Lee
, S.
Kentish
, and F.
Grieser
, “Bubbles in an acoustic field: An overview
,” Ultrason. Sonochem.
14
, 470
–475
(2007
).12.
X.
Wang
, X.
Yan
, and Q.
Min
, “Mass transfer of microbubble in liquid under multifrequency acoustic excitation—A theoretical study
,” Ultrason. Sonochem.
102
, 106760
(2024
).13.
E.-A.
Brujan
, K.
Nahen
, P.
Schmidt
, and A.
Vogel
, “Dynamics of laser-induced cavitation bubbles near an elastic boundary
,” J. Fluid Mech.
433
, 251
–281
(2001
).14.
J.
Rodríguez-Rodríguez
, A.
Sevilla
, C.
Martínez-Bazán
, and J. M.
Gordillo
, “Generation of microbubbles with applications to industry and medicine
,” Annu. Rev. Fluid Mech.
47
, 405
–429
(2015
).15.
W.
Tian
, O.
Ogunyinka
, C.
Oretti
, H. C. H.
Bandulasena
, C.
Rielly
, and H.
Yang
, “Protein crystallisation with gas microbubbles as soft template in a microfluidic device
,” Mol. Syst. Des. Eng.
8
, 1275
–1285
(2023
).16.
P. S.
Epstein
and M. S.
Plesset
, “On the stability of gas bubbles in liquid–gas solutions
,” J. Chem. Phys.
18
, 1505
–1509
(1950
).17.
S.
Ljunggren
and J. C.
Eriksson
, “The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction
,” Colloids Surf., A
129–130
, 151
–155
(1997
).18.
N.
Joewondo
, V.
Garbin
, and R.
Pini
, “Experimental evidence of the effect of solute concentration on the collective evolution of bubbles in a regular pore-network
,” Chem. Eng. Res. Des.
192
, 82
–90
(2023
).19.
G. H.
Kelsall
, S.
Tang
, S.
Yurdakul
, and A. L.
Smith
, “Electrophoretic behaviour of bubbles in aqueous electrolytes
,” J. Chem. Soc., Faraday Trans.
92
, 3887
(1996
).20.
M.
Manciu
and E.
Ruckenstein
, “Specific ion effects via ion hydration: I. Surface tension
,” Adv. Colloid Interface Sci.
105
, 63
–101
(2003
).21.
Y.
Levin
, “Polarizable ions at interfaces
,” Phys. Rev. Lett.
102
, 147803
(2009
).22.
Y.
Levin
, A. P.
dos Santos
, and A.
Diehl
, “Ions at the air–water interface: An end to a hundred-year-old mystery?
,” Phys. Rev. Lett.
103
, 257802
(2009
).23.
Y.
Levin
and A. P. d.
Santos
, “Ions at hydrophobic interfaces
,” J. Phys.: Condens. Matter
26
, 203101
(2014
).24.
D. F.
Parsons
and B. W.
Ninham
, “Surface charge reversal and hydration forces explained by ionic dispersion forces and surface hydration
,” Colloids Surf., A
383
, 2
–9
(2011
).25.
T. T.
Duignan
, D. F.
Parsons
, and B. W.
Ninham
, “Ion interactions with the air–water interface using a continuum solvent model
,” J. Phys. Chem. B
118
, 8700
–8710
(2014
).26.
B. W.
Ninham
, T. T.
Duignan
, and D. F.
Parsons
, “Approaches to hydration, old and new: Insights through Hofmeister effects
,” Curr. Opin. Colloid Interface Sci.
16
, 612
–617
(2011
).27.
T. T.
Duignan
, D. F.
Parsons
, and B. W.
Ninham
, “Collins’s rule, Hofmeister effects and ionic dispersion interactions
,” Chem. Phys. Lett.
608
, 55
–59
(2014
).28.
N. F.
Bunkin
, A. V.
Shkirin
, N. V.
Suyazov
, V. A.
Babenko
, A. A.
Sychev
, N. V.
Penkov
, K. N.
Belosludtsev
, and S. V.
Gudkov
, “Formation and dynamics of ion-stabilized gas nanobubble phase in the bulk of aqueous NaCl solutions
,” J. Phys. Chem. B
120
, 1291
–1303
(2016
).29.
A. P.
dos Santos
, A.
Diehl
, and Y.
Levin
, “Surface tensions, surface potentials, and the Hofmeister series of electrolyte solutions
,” Langmuir
26
, 10778
–10783
(2010
).30.
S. O.
Yurchenko
, A. V.
Shkirin
, B. W.
Ninham
, A. A.
Sychev
, V. A.
Babenko
, N. V.
Penkov
, N. P.
Kryuchkov
, and N. F.
Bunkin
, “Ion-specific and thermal effects in the stabilization of the gas nanobubble phase in bulk aqueous electrolyte solutions
,” Langmuir
32
, 11245
–11255
(2016
).31.
W.
Wei
, “Hofmeister effects shine in nanoscience
,” Adv. Sci.
10
, 2302057
(2023
).32.
B. H.
Tan
, H.
An
, and C.-D.
Ohl
, “How bulk nanobubbles might survive
,” Phys. Rev. Lett.
124
, 134503
(2020
).33.
S.
Wang
, L.
Zhou
, and Y.
Gao
, “Can bulk nanobubbles be stabilized by electrostatic interaction?
,” Phys. Chem. Chem. Phys.
23
, 16501
–16505
(2021
).34.
S. I.
Koshoridze
and Y. K.
Levin
, “Comment on ‘can bulk nanobubbles be stabilized by electrostatic interaction?’ by S. Wang, L. Zhou, and Y. Gao, Phys. Chem. Chem. Phys., 2021, 23, 16501
,” Phys. Chem. Chem. Phys.
24
, 10622
–10625
(2022
).35.
S.
Wang
, L.
Zhou
, and Y.
Gao
, “Reply to the ‘comment on can bulk nanobubbles be stabilized by electrostatic interaction?’ by S. Koshoridze and Y. Levin, Phys. Chem. Chem. Phys., 2022, 24, doi: 10.1039/d1cp04406k
,” Phys. Chem. Chem. Phys.
24
, 10626
–10627
(2022
).36.
Y.
Levin
and J. E.
Flores-Mena
, “Surface tension of strong electrolytes
,” Europhys. Lett.
56
, 187
–192
(2001
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.