We study microbubbles (MBs) in aqueous electrolyte solutions and show that increasing the salt concentration slows down the kinetics of MB dissolution. We modified the Epstein–Plesset theory and experimented with NaCl aqueous solutions to estimate the MB effective surface charge and to compare it with predictions from the modified Poisson–Boltzmann theory. Our results reveal a mechanism responsible for the change in the dissolution of MBs in aqueous electrolyte solutions, with implications for emerging fields ranging from physics of solutions to soft and biological matter.

1.
B.
Dollet
,
P.
Marmottant
, and
V.
Garbin
, “
Bubble dynamics in soft and biological matter
,”
Annu. Rev. Fluid Mech.
51
,
331
355
(
2019
).
2.
F.
Struyven
,
M.
Sellier
, and
P.
Mandin
, “
Review: Interactions between electrogenerated bubbles and microfluidic phenomena
,”
Int. J. Hydrogen Energy
48
,
32607
32630
(
2023
).
3.
A. V.
Postnikov
,
I. V.
Uvarov
,
M. V.
Lokhanin
, and
V. B.
Svetovoy
, “
Electrically controlled cloud of bulk nanobubbles in water solutions
,”
PLoS One
12
,
e0181727
(
2017
).
4.
V. B.
Svetovoy
,
A. V.
Prokaznikov
,
A. V.
Postnikov
,
I. V.
Uvarov
, and
G.
Palasantzas
, “
Explosion of microbubbles generated by the alternating polarity water electrolysis
,”
Energies
13
,
20
(
2019
).
5.
I. V.
Uvarov
,
P. S.
Shlepakov
,
A. E.
Melenev
,
K.
Ma
,
V. B.
Svetovoy
, and
G. J. M.
Krijnen
, “
A peristaltic micropump based on the fast electrochemical actuator: Design, fabrication, and preliminary testing
,”
Actuators
10
,
62
(
2021
).
6.
V. B.
Svetovoy
, “
Spontaneous chemical reactions between hydrogen and oxygen in nanobubbles
,”
Curr. Opin. Colloid Interface Sci.
52
,
101423
(
2021
).
7.
K.
Fan
,
Z.
Huang
,
H.
Lin
,
L.
Shen
,
C.
Gao
,
G.
Zhou
,
J.
Hu
,
H.
Yang
, and
F.
Xu
, “
Effects of micro-/nanobubble on membrane antifouling performance and the mechanism insights
,”
J. Cleaner Prod.
376
,
134331
(
2022
).
8.
M.
Dong
,
G.
Wang
,
X.
Zhang
,
D.
Tan
,
J. P. K.
D
,
J.
Ren
,
H.
Colorado
,
H.
Hou
,
Z.
Toktarbay
, and
Z.
Guo
, “
An overview of polymer foaming assisted by supercritical fluid
,”
Adv. Compos. Hybrid Mater.
6
,
207
(
2023
).
9.
K. R.
Marcelino
,
L.
Ling
,
S.
Wongkiew
,
H. T.
Nhan
,
K. C.
Surendra
,
T.
Shitanaka
,
H.
Lu
, and
S. K.
Khanal
, “
Nanobubble technology applications in environmental and agricultural systems: Opportunities and challenges
,”
Crit. Rev. Environ. Sci. Technol.
53
,
1378
1403
(
2022
).
10.
T. R.
Porter
,
S. L.
Mulvagh
,
S. S.
Abdelmoneim
,
H.
Becher
,
J. T.
Belcik
,
M.
Bierig
,
J.
Choy
,
N.
Gaibazzi
,
L. D.
Gillam
,
R.
Janardhanan
,
S.
Kutty
,
H.
Leong-Poi
,
J. R.
Lindner
,
M. L.
Main
,
W.
Mathias
,
M. M.
Park
,
R.
Senior
, and
F.
Villanueva
, “
Clinical applications of ultrasonic enhancing agents in echocardiography: 2018 American society of echocardiography guidelines update
,”
J. Am. Soc. Echocardiography
31
,
241
274
(
2018
).
11.
M.
Ashokkumar
,
J.
Lee
,
S.
Kentish
, and
F.
Grieser
, “
Bubbles in an acoustic field: An overview
,”
Ultrason. Sonochem.
14
,
470
475
(
2007
).
12.
X.
Wang
,
X.
Yan
, and
Q.
Min
, “
Mass transfer of microbubble in liquid under multifrequency acoustic excitation—A theoretical study
,”
Ultrason. Sonochem.
102
,
106760
(
2024
).
13.
E.-A.
Brujan
,
K.
Nahen
,
P.
Schmidt
, and
A.
Vogel
, “
Dynamics of laser-induced cavitation bubbles near an elastic boundary
,”
J. Fluid Mech.
433
,
251
281
(
2001
).
14.
J.
Rodríguez-Rodríguez
,
A.
Sevilla
,
C.
Martínez-Bazán
, and
J. M.
Gordillo
, “
Generation of microbubbles with applications to industry and medicine
,”
Annu. Rev. Fluid Mech.
47
,
405
429
(
2015
).
15.
W.
Tian
,
O.
Ogunyinka
,
C.
Oretti
,
H. C. H.
Bandulasena
,
C.
Rielly
, and
H.
Yang
, “
Protein crystallisation with gas microbubbles as soft template in a microfluidic device
,”
Mol. Syst. Des. Eng.
8
,
1275
1285
(
2023
).
16.
P. S.
Epstein
and
M. S.
Plesset
, “
On the stability of gas bubbles in liquid–gas solutions
,”
J. Chem. Phys.
18
,
1505
1509
(
1950
).
17.
S.
Ljunggren
and
J. C.
Eriksson
, “
The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction
,”
Colloids Surf., A
129–130
,
151
155
(
1997
).
18.
N.
Joewondo
,
V.
Garbin
, and
R.
Pini
, “
Experimental evidence of the effect of solute concentration on the collective evolution of bubbles in a regular pore-network
,”
Chem. Eng. Res. Des.
192
,
82
90
(
2023
).
19.
G. H.
Kelsall
,
S.
Tang
,
S.
Yurdakul
, and
A. L.
Smith
, “
Electrophoretic behaviour of bubbles in aqueous electrolytes
,”
J. Chem. Soc., Faraday Trans.
92
,
3887
(
1996
).
20.
M.
Manciu
and
E.
Ruckenstein
, “
Specific ion effects via ion hydration: I. Surface tension
,”
Adv. Colloid Interface Sci.
105
,
63
101
(
2003
).
21.
Y.
Levin
, “
Polarizable ions at interfaces
,”
Phys. Rev. Lett.
102
,
147803
(
2009
).
22.
Y.
Levin
,
A. P.
dos Santos
, and
A.
Diehl
, “
Ions at the air–water interface: An end to a hundred-year-old mystery?
,”
Phys. Rev. Lett.
103
,
257802
(
2009
).
23.
Y.
Levin
and
A. P. d.
Santos
, “
Ions at hydrophobic interfaces
,”
J. Phys.: Condens. Matter
26
,
203101
(
2014
).
24.
D. F.
Parsons
and
B. W.
Ninham
, “
Surface charge reversal and hydration forces explained by ionic dispersion forces and surface hydration
,”
Colloids Surf., A
383
,
2
9
(
2011
).
25.
T. T.
Duignan
,
D. F.
Parsons
, and
B. W.
Ninham
, “
Ion interactions with the air–water interface using a continuum solvent model
,”
J. Phys. Chem. B
118
,
8700
8710
(
2014
).
26.
B. W.
Ninham
,
T. T.
Duignan
, and
D. F.
Parsons
, “
Approaches to hydration, old and new: Insights through Hofmeister effects
,”
Curr. Opin. Colloid Interface Sci.
16
,
612
617
(
2011
).
27.
T. T.
Duignan
,
D. F.
Parsons
, and
B. W.
Ninham
, “
Collins’s rule, Hofmeister effects and ionic dispersion interactions
,”
Chem. Phys. Lett.
608
,
55
59
(
2014
).
28.
N. F.
Bunkin
,
A. V.
Shkirin
,
N. V.
Suyazov
,
V. A.
Babenko
,
A. A.
Sychev
,
N. V.
Penkov
,
K. N.
Belosludtsev
, and
S. V.
Gudkov
, “
Formation and dynamics of ion-stabilized gas nanobubble phase in the bulk of aqueous NaCl solutions
,”
J. Phys. Chem. B
120
,
1291
1303
(
2016
).
29.
A. P.
dos Santos
,
A.
Diehl
, and
Y.
Levin
, “
Surface tensions, surface potentials, and the Hofmeister series of electrolyte solutions
,”
Langmuir
26
,
10778
10783
(
2010
).
30.
S. O.
Yurchenko
,
A. V.
Shkirin
,
B. W.
Ninham
,
A. A.
Sychev
,
V. A.
Babenko
,
N. V.
Penkov
,
N. P.
Kryuchkov
, and
N. F.
Bunkin
, “
Ion-specific and thermal effects in the stabilization of the gas nanobubble phase in bulk aqueous electrolyte solutions
,”
Langmuir
32
,
11245
11255
(
2016
).
31.
W.
Wei
, “
Hofmeister effects shine in nanoscience
,”
Adv. Sci.
10
,
2302057
(
2023
).
32.
B. H.
Tan
,
H.
An
, and
C.-D.
Ohl
, “
How bulk nanobubbles might survive
,”
Phys. Rev. Lett.
124
,
134503
(
2020
).
33.
S.
Wang
,
L.
Zhou
, and
Y.
Gao
, “
Can bulk nanobubbles be stabilized by electrostatic interaction?
,”
Phys. Chem. Chem. Phys.
23
,
16501
16505
(
2021
).
34.
S. I.
Koshoridze
and
Y. K.
Levin
, “
Comment on ‘can bulk nanobubbles be stabilized by electrostatic interaction?’ by S. Wang, L. Zhou, and Y. Gao, Phys. Chem. Chem. Phys., 2021, 23, 16501
,”
Phys. Chem. Chem. Phys.
24
,
10622
10625
(
2022
).
35.
S.
Wang
,
L.
Zhou
, and
Y.
Gao
, “
Reply to the ‘comment on can bulk nanobubbles be stabilized by electrostatic interaction?’ by S. Koshoridze and Y. Levin, Phys. Chem. Chem. Phys., 2022, 24, doi: 10.1039/d1cp04406k
,”
Phys. Chem. Chem. Phys.
24
,
10626
10627
(
2022
).
36.
Y.
Levin
and
J. E.
Flores-Mena
, “
Surface tension of strong electrolytes
,”
Europhys. Lett.
56
,
187
192
(
2001
).
You do not currently have access to this content.