Thermal energy storage and utilization has been widely concerned due to the intermittency, renewability, and economy of renewable energy. In this paper, the potential energy function of binary Na2CO3–K2CO3 salt was first constructed using the Deep Potential GENerator (DPGEN) enhanced sampling method. Deep potential molecular dynamics simulations were performed to calculate the thermal properties and structural evolution of binary carbonates. The results show that as the temperature increases from 1073 to 1273 K, the viscosity and thermal conductivity decrease from 5.011 mPa s and 0.502 W/(m K) to 2.526 mPa s and 0.481 W/(m K), respectively. The decrease in viscosity is related to the distance and interaction between the molten salt ions. In addition, the diffusion coefficients, energy barriers, ionic radius, angular distribution function, and coordination number of molten salt were calculated and analyzed. The CO32− exhibits a stable planar triangular structure. The ionic radius of Na+ is smaller than that of K+, which makes Na+ suffer less spatial hindrance during motion and has a higher diffusion coefficient. The energy barriers that Na+ needs to overcome to escape the Coulomb force is greater than that of K+ ions, so molten salt containing Na+ may possess greater heat storage potential. We believe that the potential function constructed with DPGEN enhanced sampling strategy can provide more convincing results for predicting the thermal properties of molten salts. This paper aims to provide a technical route to develop the novel complex molten salt phase change material for thermal energy storage.

1.
J.
Baigorri
,
F.
Zaversky
, and
D.
Astrain
,
Renewable Sustainable Energy Rev.
185
,
113633
(
2023
).
2.
H. M.
Ali
,
T. U.
Rehman
,
M.
Arici
,
Z.
Said
,
B.
Durakovic
,
H. I.
Mohammed
,
R.
Kumar
,
M. K.
Rathod
,
O.
Buyukdagli
, and
M.
Teggar
,
Prog. Energy Combust. Sci.
100
,
101109
(
2024
).
3.
D. M.
Han
,
Y.
Hou
,
B. S.
Jiang
,
B. X.
Geng
,
X. B.
He
,
E.
Shagdar
,
B. G.
Lougou
, and
Y.
Shuai
,
J. Energy Storage
64
,
107172
(
2023
).
4.
A.
Zeidler
,
P. S.
Salmon
,
T.
Usuki
,
S.
Kohara
,
H. E.
Fischer
, and
M.
Wilson
,
J. Chem. Phys.
157
,
094504
(
2022
).
5.
B. J.
Alder
and
T. E.
Wainwright
,
J. Chem. Phys.
31
,
459
466
(
1959
).
6.
L.
Monticelli
and
D. P.
Tieleman
,
Methods Mol. Biol.
924
,
197
213
(
2013
).
7.
M. L.
Huggins
and
J. E.
Mayer
,
J. Chem. Phys.
1
,
643
646
(
1933
).
8.
F. G.
Fumi
and
M. P.
Tosi
,
J. Phys. Chem. Solids
25
,
31
43
(
1964
).
9.
M. P.
Tosi
and
F. G.
Fumi
,
J. Phys. Chem. Solids
25
,
45
52
(
1964
).
10.
H.
Tian
,
Z.
Kou
,
X.
Pang
, and
Y.
Yu
,
Energy
284
,
129277
(
2023
).
11.
X.
Yang
,
J.
Chang
,
J.
Liu
,
Y.
Ma
, and
B.
Gao
,
J. Energy Storage
63
,
107015
(
2023
).
12.
G.
Pan
,
J.
Ding
,
W.
Wang
, and
X.
Wei
,
Energy Procedia
105
,
4377
4382
(
2017
).
13.
J.
Ding
,
G.
Pan
,
L.
Du
,
J.
Lu
,
W.
Wang
,
X.
Wei
, and
J.
Li
,
Appl. Energy
227
,
555
563
(
2018
).
14.
N.
Galamba
,
C. A.
Nieto de Castro
, and
J. F.
Ely
,
J. Chem. Phys.
122
,
224501
(
2005
).
15.
N.
Galamba
,
C. A.
Nieto de Castro
, and
J. F.
Ely
,
J. Chem. Phys.
126
,
224511
(
2007
).
16.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
17.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
864
871
(
1964
).
18.
D. A.
Andersson
and
B. W.
Beeler
,
J. Nucl. Mater.
568
,
153836
(
2022
).
19.
K.
Duemmler
,
Y.
Lin
,
M.
Woods
,
T.
Karlsson
,
R.
Gakhar
, and
B.
Beeler
,
J. Nucl. Mater.
559
,
153414
(
2022
).
20.
I. D.
Zakiryanova
,
D. O.
Zakiryanova
, and
P. O.
Zakiryanova
,
J. Mol. Liq.
376
,
121485
(
2023
).
21.
W.
Liang
,
G.
Lu
, and
J.
Yu
,
J. Mol. Liq.
309
,
113131
(
2020
).
22.
W.
Liang
,
J.
Wu
,
H.
Ni
,
G.
Lu
, and
J.
Yu
,
J. Mol. Liq.
298
,
112063
(
2020
).
23.
M.
Liu
,
X.
Li
,
Y.
Wang
,
T.
Xu
,
L.
Yan
, and
Z.
Tang
,
J. Mol. Liq.
346
,
117054
(
2022
).
24.
A.
Bengtson
,
H.
Nam
,
S.
Saha
,
R.
Sakidja
, and
D.
Morgan
,
Comput. Mater. Sci.
83
,
362
370
(
2014
).
25.
T.
Shah
,
K.
Fazel
,
J.
Lian
,
L.
Huang
,
Y.
Shi
, and
R.
Sundararaman
,
J. Chem. Phys.
159
,
124502
(
2023
).
26.
G.
Pan
,
P.
Chen
,
H.
Yan
, and
Y.
Lu
,
Comput. Mater. Sci.
185
,
109955
(
2020
).
27.
M.
Bu
,
T.
Feng
, and
G.
Lu
,
J. Mol. Liq.
375
,
120689
(
2023
).
28.
M.
Bu
,
W.
Liang
, and
G.
Lu
,
Comput. Mater. Sci.
210
,
111494
(
2022
).
29.
T.
Xu
,
X.
Li
,
Y.
Wang
, and
Z.
Tang
,
ACS Appl. Mater. Interfaces
15
,
14184
14195
(
2023
).
30.
Y.
Zhang
,
H.
Wang
,
W.
Chen
,
J.
Zeng
,
L.
Zhang
,
H.
Wang
, and
W.
E
,
Comput. Phys. Commun.
253
,
107206
(
2020
).
31.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
50
(
1996
).
32.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
11186
(
1996
).
33.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
17979
(
1994
).
34.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
1775
(
1999
).
35.
H.
Wang
,
L.
Zhang
,
J.
Han
, and
W.
E
,
Comput. Phys. Commun.
228
,
178
184
(
2018
).
36.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
In ’T Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
,
Comput. Phys. Commun.
271
,
108171
(
2022
).
37.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
38
(
1996
).
38.
S.
Le Roux
and
P.
Jund
,
Comput. Mater. Sci.
49
,
70
83
(
2010
).
39.
A. T.
Ward
and
G. J.
Janz
,
Electrochim. Acta
10
,
849
857
(
1965
).
40.
L.
Du
,
J.
Ding
,
W.
Wang
,
G.
Pan
,
J.
Lu
, and
X.
Wei
,
Energy Procedia
142
,
3553
3559
(
2017
).
41.
T.
Porter
,
M. M.
Vaka
,
P.
Steenblik
, and
D.
Della Corte
,
Commun. Chem.
5
,
69
(
2022
).
42.
G. J.
Janz
and
J. L.
Perano
,
Trans. Faraday Soc.
60
,
1742
1744
(
1964
).
43.
S.
Otsubo
,
Y.
Nagasaka
,
A.
Nagashima
, and
B.
Hen
,
Trans. Jpn. Soc. Mech. Eng. Ser. B
64
,
806
813
(
1998
).
44.
G. J.
Janz
,
E.
Neuenschwander
, and
F. J.
Kelly
,
Trans. Faraday Soc.
59
,
841
845
(
1963
).
45.
Y.
Iwai
,
H.
Higashi
,
H.
Uchida
, and
Y.
Arai
,
Fluid Phase Equilib.
127
,
251
261
(
1997
).
46.
P. L.
Spedding
and
R.
Mills
,
J. Electrochem. Soc.
113
,
599
(
1966
).
47.
T.
Feng
,
B.
Yang
,
J.
Zhao
, and
G.
Lu
,
Chem. Eng. Sci.
43
,
103221
(
2024
).
49.
F.
Müller-Plathe
and
P.
Bordat
,
Lect. Notes Phys.
640
,
2256
(
2004
).
50.
G. J.
Janz
,
C. B.
Allen
,
N. P.
Bansal
,
R. M.
Murphy
, and
R. P. T.
Tomkins
, National Institute of Standards and Technology,
Gaithersburg, MD
,
1979
, p.
387
.
51.
R.
Brookes
,
A.
Davies
,
G.
Ketwaroo
, and
P. A.
Madden
,
J. Phys. Chem. B
109
,
6485
6490
(
2005
).
You do not currently have access to this content.