We develop a surface for the electric dipole moment of three interacting helium atoms and use it with state-of-the-art potential and polarizability surfaces to compute the third dielectric virial coefficient, Cɛ, for both 4He and 3He isotopes. Our results agree with previously published data computed using an approximated form for the three-body polarizability and are extended to the low-temperature regime by including exchange effects. In addition, the uncertainty of Cɛ is rigorously determined for the first time by propagating the uncertainties of the potential and polarizability surfaces; this uncertainty is much larger than the contribution from the dipole-moment surface to Cɛ. Our results compare reasonably well with the limited experimental data. The first-principles values of Cϵ computed in this work will enhance the accuracy of primary temperature and pressure metrology based on measurements of the dielectric constant of helium.

1.
C.
Gaiser
,
T.
Zandt
, and
B.
Fellmuth
, “
Dielectric-constant gas thermometry
,”
Metrologia
52
,
S217
S226
(
2015
).
2.
C.
Gaiser
,
B.
Fellmuth
, and
N.
Haft
, “
Primary thermometry from 2.5 K to 140 K applying dielectric-constant gas thermometry
,”
Metrologia
54
,
141
147
(
2017
).
3.
C.
Gaiser
,
B.
Fellmuth
, and
N.
Haft
, “
Thermodynamic-temperature data from 30 K to 200 K
,”
Metrologia
57
,
055003
(
2020
).
4.
P. M. C.
Rourke
,
C.
Gaiser
,
B.
Gao
,
D.
Madonna Ripa
,
M. R.
Moldover
,
L.
Pitre
, and
R. J.
Underwood
, “
Refractive-index gas thermometry
,”
Metrologia
56
,
032001
(
2019
).
5.
B.
Gao
,
H.
Zhang
,
D.
Han
,
C.
Pan
,
H.
Chen
,
Y.
Song
,
W.
Liu
,
J.
Hu
,
X.
Kong
,
F.
Sparasci
,
M.
Plimmer
,
E.
Luo
, and
L.
Pitre
, “
Measurement of thermodynamic temperature between 5 K and 24.5 K with single-pressure refractive-index gas thermometry
,”
Metrologia
57
,
065006
(
2020
).
6.
D.
Madonna Ripa
,
D.
Imbraguglio
,
C.
Gaiser
,
P. P. M.
Steur
,
D.
Giraudi
,
M.
Fogliati
,
M.
Bertinetti
,
G.
Lopardo
,
R.
Dematteis
, and
R. M.
Gavioso
, “
Refractive index gas thermometry between 13.8 K and 161.4 K
,”
Metrologia
58
,
025008
(
2021
).
7.
P. M. C.
Rourke
, “
Perspective on the refractive-index gas metrology data landscape
,”
J. Phys. Chem. Ref. Data
50
,
033104
(
2021
).
8.
M. R.
Moldover
,
R. M.
Gavioso
,
J. B.
Mehl
,
L.
Pitre
,
M.
de Podesta
, and
J. T.
Zhang
, “
Acoustic gas thermometry
,”
Metrologia
51
,
R1
R19
(
2014
).
9.
C.
Gaiser
,
B.
Fellmuth
, and
W.
Sabuga
, “
Primary gas-pressure standard from electrical measurements and thermophysical ab initio calculations
,”
Nat. Phys.
16
,
177
180
(
2020
).
10.
C.
Gaiser
,
B.
Fellmuth
, and
W.
Sabuga
, “
Primary gas pressure standard passes next stress test
,”
Ann. Phys.
534
,
2200336
(
2022
).
11.
G.
Garberoglio
,
C.
Gaiser
,
R. M.
Gavioso
,
A. H.
Harvey
,
R.
Hellmann
,
B.
Jeziorski
,
K.
Meier
,
M. R.
Moldover
,
L.
Pitre
,
K.
Szalewicz
, and
R.
Underwood
, “
Ab initio calculation of fluid properties for precision metrology
,”
J. Phys. Chem. Ref. Data
52
,
031502
(
2023
).
12.
M.
Puchalski
,
K.
Szalewicz
,
M.
Lesiuk
, and
B.
Jeziorski
, “
QED calculation of the dipole polarizability of helium atom
,”
Phys. Rev. A
101
,
022505
(
2020
).
13.
P.
Czachorowski
,
M.
Przybytek
,
M.
Lesiuk
,
M.
Puchalski
, and
B.
Jeziorski
, “
Second virial coefficients for 4He and 3He from an accurate relativistic interaction potential
,”
Phys. Rev. A
102
,
042810
(
2020
).
14.
W.
Cencek
,
J.
Komasa
, and
K.
Szalewicz
, “
Collision-induced dipole polarizability of helium dimer from explicitly correlated calculations
,”
J. Chem. Phys.
135
,
014301
(
2011
).
15.
G.
Garberoglio
and
A. H.
Harvey
, “
Path-integral calculation of the second dielectric and refractivity virial coefficients of helium, neon, and argon
,”
J. Res. Natl. Inst. Stand. Technol.
125
,
125022
(
2020
).
16.
G.
Garberoglio
,
A. H.
Harvey
, and
B.
Jeziorski
, “
Path-integral calculation of the third dielectric virial coefficient of noble gases
,”
J. Chem. Phys.
155
,
234103
(
2021
).
17.
J.
Lang
,
M.
Przybytek
,
M.
Lesiuk
, and
B.
Jeziorski
, “
Collision-induced three-body polarizability of helium
,”
J. Chem. Phys.
158
,
114303
(
2023
).
18.
J.
Lang
,
G.
Garberoglio
,
M.
Przybytek
,
M.
Jeziorska
, and
B.
Jeziorski
, “
Three-body potential and third virial coefficients for helium including relativistic and nuclear-motion effects
,”
Phys. Chem. Chem. Phys.
25
,
23395
23416
(
2023
).
19.
S. F.
Boys
and
F.
Bernardi
, “
The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
,”
Mol. Phys.
19
,
553
566
(
1970
).
20.
M.
Gutowski
,
J. H.
Van Lenthe
,
J.
Verbeek
,
F. B.
Van Duijneveldt
, and
G.
Chałasinski
, “
The basis set superposition error in correlated electronic structure calculations
,”
Chem. Phys. Lett.
124
,
370
375
(
1986
).
21.
G.
Chałasiński
and
M. M.
Szczesniak
, “
State of the art and challenges of the ab initio theory of intermolecular interactions
,”
Chem. Rev.
100
,
4227
4252
(
2000
).
22.
B.
Skwara
,
W.
Bartkowiak
, and
D. L.
Silva
, “
On the basis set superposition error in supermolecular calculations of interaction-induced electric properties: Many-body components
,”
Theor. Chim. Acta
122
,
127
136
(
2009
).
23.
K.
Hald
,
F.
Pawłowski
,
P.
Jørgensen
, and
C.
Hättig
, “
Calculation of frequency-dependent polarizabilities using the approximate coupled-cluster triples model CC3
,”
J. Chem. Phys.
118
,
1292
1300
(
2003
).
24.
K.
Aidas
,
C.
Angeli
,
K. L.
Bak
,
V.
Bakken
,
R.
Bast
,
L.
Boman
,
O.
Christiansen
,
R.
Cimiraglia
,
S.
Coriani
,
P.
Dahle
et al, “
The Dalton quantum chemistry program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
269
284
(
2014
).
25.
See https://daltonprogram.org for more information about Dalton, a molecular electronic structure program, release 2018,
2018
.
26.
W.
Cencek
,
M.
Przybytek
,
J.
Komasa
,
J. B.
Mehl
,
B.
Jeziorski
, and
K.
Szalewicz
, “
Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium
,”
J. Chem. Phys.
136
,
224303
(
2012
).
27.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
28.
D. E.
Woon
and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties
,”
J. Chem. Phys.
100
,
2975
2988
(
1994
).
29.
X.
Li
and
K. L. C.
Hunt
, “
Nonadditive three-body dipoles of inert gas trimers and H2⋯H2⋯H2: Long-range effects in far infrared absorption and triple vibrational transitions
,”
J. Chem. Phys.
107
,
4133
4153
(
1997
).
30.
K. T.
Tang
and
J. P.
Toennies
, “
An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients
,”
J. Chem. Phys.
80
,
3726
3741
(
1984
).
31.
L. W.
Bruch
,
C. T.
Corcoran
, and
F.
Weinhold
, “
On the dipole moment of three identical spherical atoms
,”
Mol. Phys.
35
,
1205
1210
(
1978
).
32.
P. W.
Fowler
, “
Dispersion dipoles, quadrupoles and electric-field gradients
,”
Chem. Phys.
143
,
447
457
(
1990
).
33.
D. M.
Bishop
and
J.
Pipin
, “
Calculation of the dispersion-dipole coefficients for interactions between H, He, and H2
,”
J. Chem. Phys.
98
,
4003
4008
(
1993
).
34.
D. M.
Whisnant
and
W.
Byers Brown
, “
Dispersion dipole between rare-gas atoms
,”
Mol. Phys.
26
,
1105
1119
(
1973
).
35.
P. H.
Martin
, “
The long-range dipole moment of three identical atoms
,”
Mol. Phys.
27
,
129
134
(
1974
).
36.
P.
Virtanen
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
,
S. J.
van der Walt
,
M.
Brett
,
J.
Wilson
,
K. J.
Millman
,
N.
Mayorov
,
A. R. J.
Nelson
,
E.
Jones
,
R.
Kern
,
E.
Larson
,
C. J.
Carey
,
İ.
Polat
,
Y.
Feng
,
E. W.
Moore
,
J.
VanderPlas
,
D.
Laxalde
,
J.
Perktold
,
R.
Cimrman
,
I.
Henriksen
,
E. A.
Quintero
,
C. R.
Harris
,
A. M.
Archibald
,
A. H.
Ribeiro
,
F.
Pedregosa
,
P.
van Mulbregt
,
A.
Vijaykumar
et al, “
SciPy 1.0: Fundamental algorithms for scientific computing in Python
,”
Nat. Methods
17
,
261
272
(
2020
).
37.
D. M.
Ceperley
, “
Path integrals in the theory of condensed helium
,”
Rev. Mod. Phys.
67
,
279
355
(
1995
).
38.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
New York
,
1965
).
39.
G.
Garberoglio
and
A. H.
Harvey
, “
Path-integral calculation of the third virial coefficient of quantum gases at low temperatures
,”
J. Chem. Phys.
134
,
134106
(
2011
);
G.
Garberoglio
and
A. H.
Harvey
,
J. Chem. Phys.
152
,
199903
(
2020
) (erratum).
40.
G.
Garberoglio
and
A. H.
Harvey
, “
First-principles calculation of the third virial coefficient of helium
,”
J. Res. Natl. Inst. Stand. Technol.
114
,
249
262
(
2009
).
41.
G.
Garberoglio
,
M. R.
Moldover
, and
A. H.
Harvey
, “
Improved first-principles calculation of the third virial coefficient of helium
,”
J. Res. Natl. Inst. Stand. Technol.
116
,
729
742
(
2011
);
G.
Garberoglio
,
M. R.
Moldover
, and
A. H.
Harvey
,
J. Res. Nat. Inst. Stand. Technol.
125
125019
(
2020
) (erratum).
42.
L. D.
Fosdick
and
H. F.
Jordan
, “
Path-integral calculation of the two-particle Slater sum for He4
,”
Phys. Rev.
143
,
58
66
(
1966
).
43.
H. F.
Jordan
and
L. D.
Fosdick
, “
Three-particle effects in the pair distribution function for He4 gas
,”
Phys. Rev.
171
,
128
149
(
1968
).
44.
G.
Garberoglio
and
A. H.
Harvey
, “
Path-integral calculation of the fourth virial coefficient of helium isotopes
,”
J. Chem. Phys.
154
,
104107
(
2021
).
45.
S.
Kirouac
and
T. K.
Bose
, “
Polarizability and dielectric properties of helium
,”
J. Chem. Phys.
64
,
1580
1582
(
1976
).
46.
M.
Lallemand
and
D.
Vidal
, “
Variation of the polarizability of noble gases with density
,”
J. Chem. Phys.
66
,
4776
4780
(
1977
).
47.
J.
Huot
and
T. K.
Bose
, “
Experimental determination of the dielectric virial coefficients of atomic gases as a function of temperature
,”
J. Chem. Phys.
95
,
2683
2687
(
1991
).
48.
C.
Gaiser
and
B.
Fellmuth
, “
Highly-accurate density-virial-coefficient values for helium, neon, and argon at 0.01 °C determined by dielectric-constant gas thermometry
,”
J. Chem. Phys.
150
,
134303
(
2019
).
49.
D.
Binosi
,
G.
Garberoglio
, and
A. H.
Harvey
, “
Third density and acoustic virial coefficients of helium isotopologues from ab initio calculations
,”
J. Chem. Phys.
160
,
244305
(
2024
).
50.
M. P.
White
and
D.
Gugan
, “
Direct measurements of the dielectric virial coefficients of 4He between 3 K and 18 K
,”
Metrologia
29
,
37
57
(
1992
).
You do not currently have access to this content.