The three-dimensional organization of chromatin is influenced by chromatin-binding proteins through both specific and non-specific interactions. However, the roles of chromatin sequence and the interactions between binding proteins in shaping chromatin structure remain elusive. By employing a simple polymer-based model of chromatin that explicitly considers sequence-dependent protein binding and protein–protein interactions, we elucidate a mechanism for chromatin organization. We find that tuning protein–protein interactions and protein concentration is sufficient to either promote or inhibit chromatin compartmentalization. Moreover, chromatin sequence and protein–protein attraction strongly affect the structural and dynamic exponents that describe the spatiotemporal organization of chromatin. Strikingly, our model’s predictions for the exponents governing chromatin structure and dynamics successfully capture experimental observations, in sharp contrast to previous chromatin models. Overall, our findings have the potential to reinterpret data obtained from various chromosome conformation capture technologies, laying the groundwork for advancing our understanding of chromatin organization.

1.
Y.
Ma
,
K.
Kanakousaki
, and
L.
Buttitta
, “
How the cell cycle impacts chromatin architecture and influences cell fate
,”
Front. Genet.
6
,
19
(
2015
).
2.
E.
Lieberman-Aiden
,
N. L.
van Berkum
,
L.
Williams
,
M.
Imakaev
,
T.
Ragoczy
,
A.
Telling
,
I.
Amit
,
B. R.
Lajoie
,
P. J.
Sabo
,
M. O.
Dorschner
et al, “
Comprehensive mapping of long-range interactions reveals folding principles of the human genome
,”
Science
326
,
289
293
(
2009
).
3.
J. R.
Dixon
,
S.
Selvaraj
,
F.
Yue
,
A.
Kim
,
Y.
Li
,
Y.
Shen
,
M.
Hu
,
J. S.
Liu
, and
B.
Ren
, “
Topological domains in mammalian genomes identified by analysis of chromatin interactions
,”
Nature
485
,
376
380
(
2012
).
4.
E. P.
Nora
,
B. R.
Lajoie
,
E. G.
Schulz
,
L.
Giorgetti
,
I.
Okamoto
,
N.
Servant
,
T.
Piolot
,
N. L.
van Berkum
,
J.
Meisig
,
J.
Sedat
et al, “
Spatial partitioning of the regulatory landscape of the X-inactivation centre
,”
Nature
485
,
381
385
(
2012
).
5.
T.
Sexton
,
E.
Yaffe
,
E.
Kenigsberg
,
F.
Bantignies
,
B.
Leblanc
,
M.
Hoichman
,
H.
Parrinello
,
A.
Tanay
, and
G.
Cavalli
, “
Three-dimensional folding and functional organization principles of the Drosophila genome
,”
Cell
148
,
458
472
(
2012
).
6.
T.-H. S.
Hsieh
,
A.
Weiner
,
B.
Lajoie
,
J.
Dekker
,
N.
Friedman
, and
O. J.
Rando
, “
Mapping nucleosome resolution chromosome folding in yeast by micro-C
,”
Cell
162
,
108
119
(
2015
).
7.
H. L.
Harris
,
H.
Gu
,
M.
Olshansky
,
A.
Wang
,
I.
Farabella
,
Y.
Eliaz
,
A.
Kalluchi
,
A.
Krishna
,
M.
Jacobs
,
G.
Cauer
et al, “
Chromatin alternates between A and B compartments at kilobase scale for subgenic organization
,”
Nat. Commun.
14
,
3303
(
2023
).
8.
V. Y.
Goel
,
M. K.
Huseyin
, and
A. S.
Hansen
, “
Region capture micro-C reveals coalescence of enhancers and promoters into nested microcompartments
,”
Nat. Genet.
55
,
1048
(
2023
).
9.
W.
Schwarzer
,
N.
Abdennur
,
A.
Goloborodko
,
A.
Pekowska
,
G.
Fudenberg
,
Y.
Loe-Mie
,
N. A.
Fonseca
,
W.
Huber
,
C. H.
Haering
,
L.
Mirny
, and
F.
Spitz
, “
Two independent modes of chromatin organization revealed by cohesin removal
,”
Nature
551
,
51
56
(
2017
).
10.
J.
Nuebler
,
G.
Fudenberg
,
M.
Imakaev
,
N.
Abdennur
, and
L. A.
Mirny
, “
Chromatin organization by an interplay of loop extrusion and compartmental segregation
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
E6697
E6706
(
2018
).
11.
G.
Shi
,
L.
Liu
,
C.
Hyeon
, and
D.
Thirumalai
, “
Interphase human chromosome exhibits out of equilibrium glassy dynamics
,”
Nat. Commun.
9
,
3161
(
2018
).
12.
S. K.
Ghosh
and
D.
Jost
, “
How epigenome drives chromatin folding and dynamics, insights from efficient coarse-grained models of chromosomes
,”
PLoS Comput. Biol.
14
,
e1006159
(
2018
).
13.
L. A.
Mirny
,
M.
Imakaev
, and
N.
Abdennur
, “
Two major mechanisms of chromosome organization
,”
Curr. Opin. Cell Biol.
58
,
142
152
(
2019
).
14.
A. M.
Chiariello
,
S.
Bianco
,
A.
Esposito
,
L.
Fiorillo
,
M.
Conte
,
E.
Irani
,
F.
Musella
,
A.
Abraham
,
A.
Prisco
, and
M.
Nicodemi
, “
Physical mechanisms of chromatin spatial organization
,”
FEBS J.
289
,
1180
1190
(
2022
).
15.
K.
Kumari
,
J.
Ravi Prakash
, and
R.
Padinhateeri
, “
Heterogeneous interactions and polymer entropy decide organization and dynamics of chromatin domains
,”
Biophys. J.
121
,
2794
2812
(
2022
).
16.
A. L.
Sanborn
,
S. S.
Rao
,
S.-C.
Huang
,
N. C.
Durand
,
M. H.
Huntley
,
A. I.
Jewett
,
I. D.
Bochkov
,
D.
Chinnappan
,
A.
Cutkosky
,
J.
Li
et al, “
Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
E6456
E6465
(
2015
).
17.
G.
Fudenberg
,
M.
Imakaev
,
C.
Lu
,
A.
Goloborodko
,
N.
Abdennur
, and
L. A.
Mirny
, “
Formation of chromosomal domains by loop extrusion
,”
Cell Rep.
15
,
2038
2049
(
2016
).
18.
A.
Goloborodko
,
J. F.
Marko
, and
L. A.
Mirny
, “
Chromosome compaction by active loop extrusion
,”
Biophys. J.
110
,
2162
2168
(
2016
).
19.
C. A.
Brackley
,
J.
Johnson
,
D.
Michieletto
,
A. N.
Morozov
,
M.
Nicodemi
,
P. R.
Cook
, and
D.
Marenduzzo
, “
Nonequilibrium chromosome looping via molecular slip links
,”
Phys. Rev. Lett.
119
,
138101
(
2017
).
20.
B.
Chan
and
M.
Rubinstein
, “
Theory of chromatin organization maintained by active loop extrusion
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2222078120
(
2023
).
21.
T.
Sabaté
,
B.
Lelandais
,
E.
Bertrand
, and
C.
Zimmer
, “
Polymer simulations guide the detection and quantification of chromatin loop extrusion by imaging
,”
Nucleic Acids Res.
51
,
2614
2632
(
2023
).
22.
M.
Negri
,
M.
Gherardi
,
G.
Tiana
, and
M.
Cosentino Lagomarsino
, “
Spontaneous domain formation in disordered copolymers as a mechanism for chromosome structuring
,”
Soft Matter
14
,
6128
6136
(
2018
).
23.
M.
Falk
,
Y.
Feodorova
,
N.
Naumova
,
M.
Imakaev
,
B. R.
Lajoie
,
H.
Leonhardt
,
B.
Joffe
,
J.
Dekker
,
G.
Fudenberg
,
I.
Solovei
, and
L. A.
Mirny
, “
Heterochromatin drives compartmentalization of inverted and conventional nuclei
,”
Nature
570
,
395
399
(
2019
).
24.
G.
Bajpai
,
D. A.
Pavlov
,
D.
Lorber
,
T.
Volk
, and
S.
Safran
, “
Mesoscale phase separation of chromatin in the nucleus
,”
Biophys. J.
118
,
549a
(
2020
).
25.
L.
Hilbert
,
Y.
Sato
,
K.
Kuznetsova
,
T.
Bianucci
,
H.
Kimura
,
F.
Jülicher
,
A.
Honigmann
,
V.
Zaburdaev
, and
N. L.
Vastenhouw
, “
Transcription organizes euchromatin via microphase separation
,”
Nat. Commun.
12
,
1360
(
2021
).
26.
R.
Das
,
T.
Sakaue
,
G.
Shivashankar
,
J.
Prost
, and
T.
Hiraiwa
, “
How enzymatic activity is involved in chromatin organization
,”
eLife
11
,
e79901
(
2022
).
27.
O.
Adame-Arana
,
G.
Bajpai
,
D.
Lorber
,
T.
Volk
, and
S.
Safran
, “
Regulation of chromatin microphase separation by binding of protein complexes
,”
eLife
12
,
e82983
(
2023
).
28.
L.
Leibler
, “
Theory of microphase separation in block copolymers
,”
Macromolecules
13
,
1602
1617
(
1980
).
29.
M.
Olvera De La Cruz
, “
Theory of microphase separation in block copolymer solutions
,”
J. Chem. Phys.
90
,
1995
2002
(
1989
).
30.
A.
Halperin
, “
On the collapse of multiblock copolymers
,”
Macromolecules
24
,
1418
1419
(
1991
).
31.
F.
Tanaka
,
M.
Ishida
, and
A.
Matsuyama
, “
Theory of microphase formation in reversibly associating block copolymer blends
,”
Macromolecules
24
,
5582
5589
(
1991
).
32.
M.
Daoud
, “
Phase and microphase separation in polymer blends
,”
J. Phys. IV
03
(
C1
),
C1-211
C1-223
(
1993
).
33.
C.
Tanford
, “
Thermodynamics of micelle formation: Prediction of micelle size and size distribution
,”
Proc. Natl. Acad. Sci. U. S. A.
71
,
1811
1815
(
1974
).
34.
A.
Statt
,
H.
Casademunt
,
C. P.
Brangwynne
, and
A. Z.
Panagiotopoulos
, “
Model for disordered proteins with strongly sequence-dependent liquid phase behavior
,”
J. Chem. Phys.
152
,
075101
(
2020
).
35.
T.
Yamazaki
,
T.
Yamamoto
,
H.
Yoshino
,
S.
Souquere
,
S.
Nakagawa
,
G.
Pierron
, and
T.
Hirose
, “
Paraspeckles are constructed as block copolymer micelles
,”
EMBO J.
40
,
e107270
(
2021
).
36.
E. W.
Martin
,
A. S.
Holehouse
,
I.
Peran
,
M.
Farag
,
J. J.
Incicco
,
A.
Bremer
,
C. R.
Grace
,
A.
Soranno
,
R. V.
Pappu
, and
T.
Mittag
, “
Valence and patterning of aromatic residues determine the phase behavior of prion-like domains
,”
Science
367
,
694
699
(
2020
).
37.
M.
Kar
,
F.
Dar
,
T. J.
Welsh
,
L. T.
Vogel
,
R.
Kühnemuth
,
A.
Majumdar
,
G.
Krainer
,
T. M.
Franzmann
,
S.
Alberti
,
C. A.
Seidel
et al, “
Phase-separating RNA-binding proteins form heterogeneous distributions of clusters in subsaturated solutions
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2202222119
(
2022
).
38.
A.
Garaizar
,
J. R.
Espinosa
,
J. A.
Joseph
,
G.
Krainer
,
Y.
Shen
,
T. P.
Knowles
, and
R.
Collepardo-Guevara
, “
Aging can transform single-component protein condensates into multiphase architectures
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2119800119
(
2022
).
39.
T.
Quail
,
S.
Golfier
,
M.
Elsner
,
K.
Ishihara
,
V.
Murugesan
,
R.
Renger
,
F.
Jülicher
, and
J.
Brugués
, “
Force generation by protein–DNA co-condensation
,”
Nat. Phys.
17
,
1007
1012
(
2021
).
40.
T.
Nguyen
,
S.
Li
,
J. T.
Chang
,
J. W.
Watters
,
H.
Ng
,
A.
Osunsade
,
Y.
David
, and
S.
Liu
, “
Chromatin sequesters pioneer transcription factor Sox2 from exerting force on DNA
,”
Nat. Commun.
13
,
3988
(
2022
).
41.
R.
Renger
,
J. A.
Morin
,
R.
Lemaitre
,
M.
Ruer-Gruss
,
F.
Jülicher
,
A.
Hermann
, and
S. W.
Grill
, “
Co-condensation of proteins with single- and double-stranded DNA
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2107871119
(
2022
).
42.
J. A.
Morin
,
S.
Wittmann
,
S.
Choubey
,
A.
Klosin
,
S.
Golfier
,
A. A.
Hyman
,
F.
Jülicher
, and
S. W.
Grill
, “
Sequence-dependent surface condensation of a pioneer transcription factor on DNA
,”
Nat. Phys.
18
,
271
276
(
2022
).
43.
J.-U.
Sommer
,
H.
Merlitz
, and
H.
Schiessel
, “
Polymer-assisted condensation: A mechanism for hetero-chromatin formation and epigenetic memory
,”
Macromolecules
55
,
4841
4851
(
2022
).
44.
M.
Nicodemi
and
A.
Prisco
, “
Thermodynamic pathways to genome spatial organization in the cell nucleus
,”
Biophys. J.
96
,
2168
2177
(
2009
).
45.
M.
Barbieri
,
M.
Chotalia
,
J.
Fraser
,
L.-M.
Lavitas
,
J.
Dostie
,
A.
Pombo
, and
M.
Nicodemi
, “
Complexity of chromatin folding is captured by the strings and binders switch model
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
16173
16178
(
2012
).
46.
C. A.
Brackley
,
S.
Taylor
,
A.
Papantonis
,
P. R.
Cook
, and
D.
Marenduzzo
, “
Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
E3605
E3611
(
2013
).
47.
F.
Erdel
and
K.
Rippe
, “
Formation of chromatin subcompartments by phase separation
,”
Biophys. J.
114
,
2262
2270
(
2018
).
48.
J.-K.
Ryu
,
C.
Bouchoux
,
H. W.
Liu
,
E.
Kim
,
M.
Minamino
,
R.
de Groot
,
A. J.
Katan
,
A.
Bonato
,
D.
Marenduzzo
,
D.
Michieletto
et al, “
Bridging-induced phase separation induced by cohesin SMC protein complexes
,”
Sci. Adv.
7
,
eabe5905
(
2021
).
49.
M.
Ancona
and
C. A.
Brackley
, “
Simulating the chromatin-mediated phase separation of model proteins with multiple domains
,”
Biophys. J.
121
,
2600
2612
(
2022
).
50.
H.
Garg
,
R.
Rajesh
, and
S.
Vemparala
, “
The conformational phase diagram of neutral polymers in the presence of attractive crowders
,”
J. Chem. Phys.
158
,
114903
(
2023
).
51.
A.
Grosberg
,
Y.
Rabin
,
S.
Havlin
, and
A.
Neer
, “
Crumpled globule model of the three-dimensional structure of DNA
,”
Europhys. Lett.
23
,
373
(
1993
).
52.
L. A.
Mirny
, “
The fractal globule as a model of chromatin architecture in the cell
,”
Chromosome Res.
19
,
37
51
(
2011
).
53.
S.
Grosse-Holz
,
A.
Coulon
, and
L.
Mirny
, “
Scale-free models of chromosome structure, dynamics, and mechanics
,” biorXiv:10.1101/2023.04.14.536939 (
2023
).
54.
S.
Jhunjhunwala
,
M. C.
van Zelm
,
M. M.
Peak
,
S.
Cutchin
,
R.
Riblet
,
J. J.
van Dongen
,
F. G.
Grosveld
,
T. A.
Knoch
, and
C.
Murre
, “
The 3D structure of the immunoglobulin heavy-chain locus: Implications for long-range genomic interactions
,”
Cell
133
,
265
279
(
2008
).
55.
D. B.
Brückner
,
H.
Chen
,
L.
Barinov
,
B.
Zoller
, and
T.
Gregor
, “
Stochastic motion and transcriptional dynamics of pairs of distal DNA loci on a compacted chromosome
,”
Science
380
,
1357
1362
(
2023
).
56.
C. A.
Brackley
,
J. M.
Brown
,
D.
Waithe
,
C.
Babbs
,
J.
Davies
,
J. R.
Hughes
,
V. J.
Buckle
, and
D.
Marenduzzo
, “
Predicting the three-dimensional folding of cis-regulatory regions in mammalian genomes using bioinformatic data and polymer models
,”
Genome Biol.
17
,
59
(
2016
).
57.
Q.
MacPherson
,
B.
Beltran
, and
A. J.
Spakowitz
, “
Bottom–up modeling of chromatin segregation due to epigenetic modifications
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
12739
12744
(
2018
).
58.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
5247
(
1971
).
59.
D.
Chaudhuri
and
B. M.
Mulder
, “
Spontaneous helicity of a polymer with side loops confined to a cylinder
,”
Phys. Rev. Lett.
108
,
268305
(
2012
).
60.
H.
Limbach
,
A.
Arnold
,
B.
Mann
, and
C.
Holm
, “
ESPResSo—An extensible simulation package for research on soft matter systems
,”
Comput. Phys. Commun.
174
,
704
727
(
2006
).
61.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
62.
P.-G.
De Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
1979
).
63.
S. S.
Rao
,
S.-C.
Huang
,
B.
Glenn St Hilaire
,
J. M.
Engreitz
,
E. M.
Perez
,
K.-R.
Kieffer-Kwon
,
A. L.
Sanborn
,
S. E.
Johnstone
,
G. D.
Bascom
,
I. D.
Bochkov
et al, “
Cohesin loss eliminates all loop domains
,”
Cell
171
,
305
320.e24
(
2017
).
64.
S.
Kim
,
I.
Liachko
,
D. G.
Brickner
,
K.
Cook
,
W. S.
Noble
,
J. H.
Brickner
,
J.
Shendure
, and
M. J.
Dunham
, “
The dynamic three-dimensional organization of the diploid yeast genome
,”
eLife
6
,
e23623
(
2017
).
65.
T.-H. S.
Hsieh
,
C.
Cattoglio
,
E.
Slobodyanyuk
,
A. S.
Hansen
,
X.
Darzacq
, and
R.
Tjian
, “
Enhancer–promoter interactions and transcription are largely maintained upon acute loss of CTCF, cohesin, WAPL or YY1
,”
Nat. Genet.
54
,
1919
1932
(
2022
).
66.
A. N.
Boettiger
,
B.
Bintu
,
J. R.
Moffitt
,
S.
Wang
,
B. J.
Beliveau
,
G.
Fudenberg
,
M.
Imakaev
,
L. A.
Mirny
,
C.-t.
Wu
, and
X.
Zhuang
, “
Super-resolution imaging reveals distinct chromatin folding for different epigenetic states
,”
Nature
529
,
418
422
(
2016
).
67.
B.
Bintu
,
L. J.
Mateo
,
J.-H.
Su
,
N. A.
Sinnott-Armstrong
,
M.
Parker
,
S.
Kinrot
,
K.
Yamaya
,
A. N.
Boettiger
, and
X.
Zhuang
, “
Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells
,”
Science
362
,
eaau1783
(
2018
).
68.
J.-H.
Su
,
P.
Zheng
,
S. S.
Kinrot
,
B.
Bintu
, and
X.
Zhuang
, “
Genome-scale imaging of the 3D organization and transcriptional activity of chromatin
,”
Cell
182
,
1641
1659.e26
(
2020
).
69.
Y.
Takei
,
J.
Yun
,
S.
Zheng
,
N.
Ollikainen
,
N.
Pierson
,
J.
White
,
S.
Shah
,
J.
Thomassie
,
S.
Suo
,
C.-H. L.
Eng
et al, “
Integrated spatial genomics reveals global architecture of single nuclei
,”
Nature
590
,
344
350
(
2021
).
70.
S. C.
Weber
,
A. J.
Spakowitz
, and
J. A.
Theriot
, “
Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm
,”
Phys. Rev. Lett.
104
,
238102
(
2010
).
71.
H.
Hajjoul
,
J.
Mathon
,
H.
Ranchon
,
I.
Goiffon
,
J.
Mozziconacci
,
B.
Albert
,
P.
Carrivain
,
J.-M.
Victor
,
O.
Gadal
,
K.
Bystricky
, and
A.
Bancaud
, “
High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome
,”
Genome Res.
23
,
1829
1838
(
2013
).
72.
I.
Bronshtein
,
I.
Kanter
,
E.
Kepten
,
M.
Lindner
,
S.
Berezin
,
Y.
Shav-Tal
, and
Y.
Garini
, “
Exploring chromatin organization mechanisms through its dynamic properties
,”
Nucleus
7
,
27
33
(
2016
).
73.
N.
Khanna
,
Y.
Zhang
,
J. S.
Lucas
,
O. K.
Dudko
, and
C.
Murre
, “
Chromosome dynamics near the sol-gel phase transition dictate the timing of remote genomic interactions
,”
Nat. Commun.
10
,
2771
(
2019
).
74.
J. S.
Lucas
,
Y.
Zhang
,
O. K.
Dudko
, and
C.
Murre
, “
3D trajectories adopted by coding and regulatory DNA elements: First-passage times for genomic interactions
,”
Cell
158
,
339
352
(
2014
).
75.
M.
Gabriele
,
H. B.
Brandão
,
S.
Grosse-Holz
,
A.
Jha
,
G. M.
Dailey
,
C.
Cattoglio
,
T.-H. S.
Hsieh
,
L.
Mirny
,
C.
Zechner
, and
A. S.
Hansen
, “
Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging
,”
Science
376
,
496
501
(
2022
).
76.
P.
Mach
,
P. I.
Kos
,
Y.
Zhan
,
J.
Cramard
,
S.
Gaudin
,
J.
Tünnermann
,
E.
Marchi
,
J.
Eglinger
,
J.
Zuin
,
M.
Kryzhanovska
et al, “
Cohesin and CTCF control the dynamics of chromosome folding
,”
Nat. Genet.
54
,
1907
1918
(
2022
).
77.
A. G.
Larson
,
D.
Elnatan
,
M. M.
Keenen
,
M. J.
Trnka
,
J. B.
Johnston
,
A. L.
Burlingame
,
D. A.
Agard
,
S.
Redding
, and
G. J.
Narlikar
, “
Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin
,”
Nature
547
,
236
240
(
2017
).
78.
M. M.
Keenen
,
D.
Brown
,
L. D.
Brennan
,
R.
Renger
,
H.
Khoo
,
C. R.
Carlson
,
B.
Huang
,
S. W.
Grill
,
G. J.
Narlikar
, and
S.
Redding
, “
HP1 proteins compact DNA into mechanically and positionally stable phase separated domains
,”
eLife
10
,
e64563
(
2021
).
79.
M. M.
Tortora
,
L. D.
Brennan
,
G.
Karpen
, and
D.
Jost
, “
HP1-driven phase separation recapitulates the thermodynamics and kinetics of heterochromatin condensate formation
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2211855120
(
2023
).
80.
F.
Erdel
,
A.
Rademacher
,
R.
Vlijm
,
J.
Tünnermann
,
L.
Frank
,
R.
Weinmann
,
E.
Schweigert
,
K.
Yserentant
,
J.
Hummert
,
C.
Bauer
et al, “
Mouse heterochromatin adopts digital compaction states without showing hallmarks of HP1-driven liquid–liquid phase separation
,”
Mol. Cell
78
,
236
249.e7
(
2020
).
81.
C.
Münkel
and
J.
Langowski
, “
Chromosome structure predicted by a polymer model
,”
Phys. Rev. E
57
,
5888
(
1998
).
82.
F.
Zenk
,
Y.
Zhan
,
P.
Kos
,
E.
Löser
,
N.
Atinbayeva
,
M.
Schächtle
,
G.
Tiana
,
L.
Giorgetti
, and
N.
Iovino
, “
HP1 drives de novo 3D genome reorganization in early Drosophila embryos
,”
Nature
593
,
289
293
(
2021
).
83.
A. R.
Strom
,
A. V.
Emelyanov
,
M.
Mir
,
D. V.
Fyodorov
,
X.
Darzacq
, and
G. H.
Karpen
, “
Phase separation drives heterochromatin domain formation
,”
Nature
547
,
241
245
(
2017
).
84.
P.
De Gennes
, “
Dynamics of entangled polymer solutions. I. The rouse model
,”
Macromolecules
9
,
587
593
(
1976
).
85.
K.
Polovnikov
,
M.
Gherardi
,
M.
Cosentino-Lagomarsino
, and
M.
Tamm
, “
Fractal folding and medium viscoelasticity contribute jointly to chromosome dynamics
,”
Phys. Rev. Lett.
120
,
088101
(
2018
).
86.
S.
Guha
and
M. K.
Mitra
, “
Multivalent binding proteins can drive collapse and reswelling of chromatin in confinement
,”
Soft Matter
19
,
153
163
(
2023
).
87.
M.
Conte
,
E.
Irani
,
A. M.
Chiariello
,
A.
Abraham
,
S.
Bianco
,
A.
Esposito
, and
M.
Nicodemi
, “
Loop-extrusion and polymer phase-separation can co-exist at the single-molecule level to shape chromatin folding
,”
Nat. Commun.
13
,
4070
(
2022
).
88.
S.
Eustermann
,
A. B.
Patel
,
K.-P.
Hopfner
,
Y.
He
, and
P.
Korber
, “
Energy-driven genome regulation by ATP-dependent chromatin remodellers
,”
Nat. Rev. Mol. Cell Biol.
25
,
309
332
(
2024
).
You do not currently have access to this content.