The interplay between densification and positional ordering during the process of crystal nucleation is a greatly investigated topic. Even for the simplest colloidal model—hard spheres—there has been much debate regarding the potential foreshadowing of nucleation by significant fluctuations in either local density or local structure. Considering anisotropic particles instead of spheres adds a third degree of freedom to the self-organization process of crystal nucleation: orientational ordering. Here, we investigate the crystal nucleation of hard triangular prisms. Using Monte Carlo simulations, we first carefully determine the crystal–fluid coexistence values and calculate the nucleation barriers for two degrees of supersaturation. Next, we use brute force simulations to obtain a large set of spontaneous nucleation events. By studying the time evolution of the local density, positional ordering, and orientational ordering in the region in which the nucleus first arises, we demonstrate that all local order parameters increase simultaneously from the very start of the nucleation process. We thus conclude that we observe no precursor for the crystal nucleation of hard triangular prisms.

1.
S. D.
Durbin
and
G.
Feher
,
Annu. Rev. Phys. Chem.
47
,
171
(
1996
).
2.
J. A.
Marsh
and
S. A.
Teichmann
,
Annu. Rev. Biochem.
84
,
551
(
2015
).
3.
M.
Matsumoto
,
S.
Saito
, and
I.
Ohmine
,
Nature
416
,
409
(
2002
).
4.
K.
Mochizuki
,
K.
Himoto
, and
M.
Matsumoto
,
Phys. Chem. Chem. Phys.
16
,
16419
(
2014
).
5.
D.
Erdemir
,
A. Y.
Lee
, and
A. S.
Myerson
,
Curr. Opin. Drug Discovery Dev.
10
,
746
(
2007
).
6.
J.
Bauer
,
S.
Spanton
,
R.
Henry
,
J.
Quick
,
W.
Dziki
,
W.
Porter
, and
J.
Morris
,
Pharm. Res.
18
,
859
(
2001
).
7.
S.
Karthika
,
T. K.
Radhakrishnan
, and
P.
Kalaichelvi
,
Cryst. Growth Des.
16
,
6663
(
2016
).
8.
W.
Ostwald
,
Z. Phys. Chem.
22U
(
1
),
289
330
(
1897
).
9.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
Phys. Rev. Lett.
75
,
2714
(
1995
).
10.
J. F.
Lutsko
and
G.
Nicolis
,
Phys. Rev. Lett.
96
,
046102
(
2006
).
11.
A.
Kumar
and
V.
Molinero
,
J. Phys. Chem. Lett.
9
,
5692
(
2018
).
12.
J.
Russo
and
H.
Tanaka
,
Sci. Rep.
2
,
505
(
2012
).
13.
J. T.
Berryman
,
M.
Anwar
,
S.
Dorosz
, and
T.
Schilling
,
J. Chem. Phys.
145
,
211901
(
2016
).
14.
M.
de Jager
,
F.
Smallenburg
, and
L.
Filion
,
J. Chem. Phys.
159
,
134902
(
2023
).
15.
S. C.
Glotzer
and
M. J.
Solomon
,
Nat. Mater.
6
,
557
(
2007
).
16.
T.
Hueckel
,
G. M.
Hocky
, and
S.
Sacanna
,
Nat. Rev. Mater.
6
,
1053
(
2021
).
17.
P. F.
Damasceno
,
M.
Engel
, and
S. C.
Glotzer
,
Science
337
,
453
(
2012
).
18.
V.
Thapar
and
F. A.
Escobedo
,
Phys. Rev. Lett.
112
,
048301
(
2014
).
19.
A. K.
Sharma
,
V.
Thapar
, and
F. A.
Escobedo
,
Soft Matter
14
,
1996
(
2018
).
20.
A. K.
Sharma
and
F. A.
Escobedo
,
J. Chem. Phys.
148
,
184104
(
2018
).
21.
A. K.
Sharma
and
F. A.
Escobedo
,
J. Phys. Chem. B
122
,
9264
(
2018
).
22.
A. K.
Sharma
and
F. A.
Escobedo
,
J. Phys. Chem. B
125
,
5160
(
2021
).
23.
S.
Lee
,
E. G.
Teich
,
M.
Engel
, and
S. C.
Glotzer
,
Proc. Natl. Acad. Sci. U. S. A.
116
,
14843
(
2019
).
24.
E. G.
Teich
,
G.
van Anders
, and
S. C.
Glotzer
,
Nat. Commun.
10
,
64
(
2019
).
25.
D.
Dendukuri
,
D. C.
Pregibon
,
J.
Collins
,
T. A.
Hatton
, and
P. S.
Doyle
,
Nat. Mater.
5
,
365
(
2006
).
26.
N.
Malikova
,
I.
Pastoriza-Santos
,
M.
Schierhorn
,
N. A.
Kotov
, and
L. M.
Liz-Marzán
,
Langmuir
18
,
3694
(
2002
).
27.
C.
Xue
,
J. E.
Millstone
,
S.
Li
, and
C. A.
Mirkin
,
Angew. Chem., Int. Ed.
46
,
8436
(
2007
).
28.
J. E.
Millstone
,
S. J.
Hurst
,
G. S.
Métraux
,
J. I.
Cutler
, and
C. A.
Mirkin
,
Small
5
,
646
(
2009
).
29.
R.
Jin
,
Y.
Charles Cao
,
E.
Hao
,
G. S.
Métraux
,
G. C.
Schatz
, and
C. A.
Mirkin
,
Nature
425
,
487
(
2003
).
30.
Y.
Sun
and
Y.
Xia
,
Adv. Mater.
15
,
695
(
2003
).
31.
C.
Xue
,
G. S.
Métraux
,
J. E.
Millstone
, and
C. A.
Mirkin
,
J. Am. Chem. Soc.
130
,
8337
(
2008
).
32.
U.
Agarwal
and
F. A.
Escobedo
,
Nat. Mater.
10
,
230
(
2011
).
33.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic Press
,
San Diego
,
2002
).
34.
D.
Frenkel
and
A. J.
Ladd
,
J. Chem. Phys.
81
,
3188
(
1984
).
35.
J. M.
Polson
,
E.
Trizac
,
S.
Pronk
, and
D.
Frenkel
,
J. Chem. Phys.
112
,
5339
(
2000
).
36.
D.
Frenkel
and
B.
Mulder
,
Mol. Phys.
55
,
1171
(
1985
).
37.
E. G.
Noya
,
C.
Vega
,
J. P. K.
Doye
, and
A. A.
Louis
,
J. Chem. Phys.
127
,
054501
(
2007
).
38.
F.
Smallenburg
,
L.
Filion
,
M.
Marechal
, and
M.
Dijkstra
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
17886
(
2012
).
39.
G. M.
Torrie
and
J. P.
Valleau
,
Chem. Phys. Lett.
28
,
578
(
1974
).
40.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
Faraday Discuss.
104
,
93
(
1996
).
41.
L.
Filion
,
M.
Hermes
,
R.
Ni
, and
M.
Dijkstra
,
J. Chem. Phys.
133
,
244115
(
2010
).
42.
M.
de Jager
and
L.
Filion
,
J. Chem. Phys.
157
,
154905
(
2022
).
43.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
(
1983
).
44.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
J. Chem. Phys.
104
,
9932
(
1996
).
46.
W.
Lechner
and
C.
Dellago
,
J. Chem. Phys.
129
,
114707
(
2008
).
47.
J. A.
van Meel
,
L.
Filion
,
C.
Valeriani
, and
D.
Frenkel
,
J. Chem. Phys.
136
,
234107
(
2012
).
48.
F.
Smallenburg
,
G.
Del Monte
,
M.
de Jager
, and
L.
Filion
,
J. Chem. Phys.
160
,
224109
(
2024
).
50.
R.
van Damme
,
B.
van der Meer
,
J. J.
van den Broeke
,
F.
Smallenburg
, and
L.
Filion
,
J. Chem. Phys.
147
,
124501
(
2017
).
51.
M.
de Jager
,
C.
Vega
,
P.
Montero De Hijes
,
F.
Smallenburg
, and
L.
Filion
, arXiv:2407.04394 (
2024
).
You do not currently have access to this content.