The assignment of the hydrogen bonded O–H stretch vibration in the proline matrix IR spectrum has sparked controversy. Employing constrained nuclear electronic orbital methods, we provide a clear assignment that the vibrational frequency drops to near 3000 cm−1 as a result of the interplay between electronic effects, nuclear quantum effects, and matrix effects.
REFERENCES
1.
G. J.
Narlikar
and D.
Herschlag
, “Mechanistic aspects of enzymatic catalysis: Lessons from comparison of RNA and protein enzymes
,” Annu. Rev. Biochem.
66
(1
), 19
–59
(1997
).2.
T. C.
Bruice
and S. J.
Benkovic
, “Chemical basis for enzyme catalysis
,” Biochemistry
39
(21
), 6267
–6274
(2000
).3.
S. J.
Benkovic
and S.
Hammes-Schiffer
, “A perspective on enzyme catalysis
,” Science
301
(5637
), 1196
–1202
(2003
).4.
R. E.
Hubbard
and M.
Kamran Haider
, “Hydrogen bonds in proteins: Role and strength
,” in eLS
(John Wiley & Sons, Ltd.
, 2010
).5.
D.
Herschlag
and M. M.
Pinney
, “Hydrogen bonds: Simple after all?
,” Biochemistry
57
(24
), 3338
–3352
(2018
).6.
J.-K.
Hwang
and A.
Warshel
, “How important are quantum mechanical nuclear motions in enzyme catalysis?
,” J. Am. Chem. Soc.
118
(47
), 11745
–11751
(1996
).7.
J.
Pu
, J.
Gao
, and D. G.
Truhlar
, “Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions
,” Chem. Rev.
106
(8
), 3140
–3169
(2006
).8.
L.
Wang
, S. D.
Fried
, S. G.
Boxer
, and T. E.
Markland
, “Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site
,” Proc. Natl. Acad. Sci. U. S. A.
111
(52
), 18454
–18459
(2014
).9.
A.
Vardi-Kilshtain
, N.
Nitoker
, and D. T.
Major
, “Nuclear quantum effects and kinetic isotope effects in enzyme reactions
,” Arch. Biochem. Biophys.
582
, 18
–27
(2015
).10.
T. E.
Markland
and M.
Ceriotti
, “Nuclear quantum effects enter the mainstream
,” Nat. Rev. Chem.
2
(3
), 0109
(2018
).11.
V.
Madison
, “Flexibility of the pyrrolidine ring in proline peptides
,” Biopolymers
16
(12
), 2671
–2692
(1977
).12.
A. A.
Morgan
and E.
Rubenstein
, “Proline: The distribution, frequency, positioning, and common functional roles of proline and polyproline sequences in the human proteome
,” PLoS One
8
(1
), e53785
(2013
).13.
S. G.
Stepanian
, I. D.
Reva
, E. D.
Radchenko
, and L.
Adamowicz
, “Conformers of nonionized proline. Matrix-isolation infrared and post-Hartree–Fock ab initio study
,” J. Phys. Chem. A
105
(47
), 10664
–10672
(2001
).14.
L.
Piela
, G.
Némethy
, and H. A.
Scheraga
, “Proline-induced constraints in α-helices
,” Biopolymers
26
(9
), 1587
–1600
(1987
).15.
R.
Sankararamakrishnan
and S.
Vishveshwara
, “Conformational studies on peptides with proline in the right-handed α-helical region
,” Biopolymers
30
(3–4
), 287
–298
(1990
).16.
S. C.
Li
, N. K.
Goto
, K. A.
Williams
, and C. M.
Deber
, “Alpha-helical, but not beta-sheet, propensity of proline is determined by peptide environment
,” Proc. Natl. Acad. Sci. U. S. A.
93
(13
), 6676
–6681
(1996
).17.
C. M.
Deber
and A. G.
Therien
, “Putting the β-breaks on membrane protein misfolding
,” Nat. Struct. Biol.
9
(5
), 318
–319
(2002
).18.
A. A.
Adzhubei
and M. J. E.
Sternberg
, “Left-handed polyproline II helices commonly occur in globular proteins
,” J. Mol. Biol.
229
(2
), 472
–493
(1993
).19.
A. A.
Adzhubei
, M. J. E.
Sternberg
, and A. A.
Makarov
, “Polyproline-II helix in proteins: Structure and function
,” J. Mol. Biol.
425
(12
), 2100
–2132
(2013
).20.
S.
Bahmanyar
and K. N.
Houk
, “Origins of opposite absolute stereoselectivities in proline-catalyzed direct mannich and aldol reactions
,” Org. Lett.
5
(8
), 1249
–1251
(2003
).21.
S. K.
Panday
, “Advances in the chemistry of proline and its derivatives: An excellent amino acid with versatile applications in asymmetric synthesis
,” Tetrahedron: Asymmetry
22
(20–22
), 1817
–1847
(2011
).22.
R. B.
Sunoj
, “Proline-derived organocatalysis and synergism between theory and experiments
,” WIREs Comput. Mol. Sci.
1
(6
), 920
–931
(2011
).23.
R. D.
Suenram
and F. J.
Lovas
, “Millimeter wave spectrum of glycine. A new conformer
,” J. Am. Chem. Soc.
102
(24
), 7180
–7184
(1980
).24.
C. H.
Hu
, M.
Shen
, and H. F. I.
Schaefer
, “Glycine conformational analysis
,” J. Am. Chem. Soc.
115
(7
), 2923
–2929
(1993
).25.
A. Y.
Ivanov
, G.
Sheina
, and Y. P.
Blagoi
, “FTIR spectroscopic study of the UV-induced rotamerization of glycine in the low temperature matrices (Kr, Ar, Ne)
,” Spectrochim. Acta, Part A
55
(1
), 219
–228
(1998
).26.
S. G.
Stepanian
, I. D.
Reva
, E. D.
Radchenko
, M. T. S.
Rosado
, M. L. T. S.
Duarte
, R.
Fausto
, and L.
Adamowicz
, “Matrix-isolation infrared and theoretical studies of the glycine conformers
,” J. Phys. Chem. A
102
(6
), 1041
–1054
(1998
).27.
S. G.
Stepanian
, I. D.
Reva
, E. D.
Radchenko
, and L.
Adamowicz
, “Conformational behavior of α-alanine. Matrix-isolation infrared and theoretical DFT and ab initio study
,” J. Phys. Chem. A
102
(24
), 4623
–4629
(1998
).28.
S. G.
Stepanian
, I. D.
Reva
, E. D.
Radchenko
, and L.
Adamowicz
, “Combined matrix-isolation infrared and theoretical DFT and ab initio study of the nonionized valine conformers
,” J. Phys. Chem. A
103
(22
), 4404
–4412
(1999
).29.
G.
Bazsó
, E. E.
Najbauer
, G.
Magyarfalvi
, and G.
Tarczay
, “Near-infrared laser induced conformational change of alanine in low-temperature matrixes and the tunneling lifetime of its conformer VI
,” J. Phys. Chem. A
117
(9
), 1952
–1962
(2013
).30.
S. G.
Stepanian
, A. Y.
Ivanov
, and L.
Adamowicz
, “Conformational composition of neutral leucine. Matrix isolation infrared and ab initio study
,” Chem. Phys.
423
, 20
–29
(2013
).31.
M.
Ramek
, A.-M.
Kelterer
, and S.
Nikolić
, “Ab initio and molecular mechanics conformational analysis of neutral L-proline
,” Int. J. Quantum Chem.
65
(6
), 1033
–1045
(1997
).32.
A. G.
Császár
and A.
Perczel
, “Ab initio characterization of building units in peptides and proteins
,” Prog. Biophys. Mol. Biol.
71
(2
), 243
–309
(1999
).33.
A.
Lesarri
, S.
Mata
, E. J.
Cocinero
, S.
Blanco
, J. C.
López
, and J. L.
Alonso
, “The Structure of neutral proline
,” Angew. Chem., Int. Ed.
41
(24
), 4673
–4676
(2002
).34.
E.
Czinki
and A. G.
Császár
, “Conformers of gaseous proline
,” Chem. - Eur. J.
9
(4
), 1008
–1019
(2003
).35.
W. D.
Allen
, E.
Czinki
, and A. G.
Császár
, “Molecular structure of proline
,” Chem. - Eur. J.
10
(18
), 4512
–4517
(2004
).36.
S.
Mata
, V.
Vaquero
, C.
Cabezas
, I.
Peña
, C.
Pérez
, J. C.
López
, and J. L.
Alonso
, “Observation of two new conformers of neutral proline
,” Phys. Chem. Chem. Phys.
11
(21
), 4141
–4144
(2009
).37.
F.
Fathi
and H.
Farrokhpour
, “Valence ionization of L-proline amino acid: Experimental and theoretical study
,” Chem. Phys. Lett.
565
, 102
–107
(2013
).38.
R.
Hadidi
, L.
Nahon
, D. K.
Božanić
, H.
Ganjitabar
, G. A.
Garcia
, and I.
Powis
, “Conformer-dependent vacuum ultraviolet photodynamics and chiral asymmetries in pure enantiomers of gas phase proline
,” Commun. Chem.
4
(1
), 72
(2021
).39.
G.
Botti
, C.
Aieta
, and R.
Conte
, “The complex vibrational spectrum of proline explained through the adiabatically switched semiclassical initial value representation
,” J. Chem. Phys.
156
(16
), 164303
(2022
).40.
Y.
Yang
and Z.
Lin
, “Extensive exploration of the conformational landscapes of neutral and terminally blocked prolines in the gas phase: A density functional theory study
,” J. Chem. Res.
46
(4
), 174751982211104
(2022
).41.
R.
Linder
, M.
Nispel
, T.
Häber
, and K.
Kleinermanns
, “Gas-phase FT-IR-spectra of natural amino acids
,” Chem. Phys. Lett.
409
(4-6
), 260
–264
(2005
).42.
T.
Bally
, “Matrix isolation
,” in Reactive Intermediate Chemistry
, edited by R. A.
Moss
, M. S.
Platz
, and M.
Jones
, Jr. (John Wiley & Sons, Ltd.
, 2003
), pp. 795
–845
.43.
P.
Dubey
, J.
Saini
, K.
Verma
, G.
Karir
, A.
Mukhopadhyay
, and K. S.
Viswanathan
, “Chapter 14 - Matrix isolation spectroscopy—A window to molecular processes
,” in Molecular and Laser Spectroscopy
, edited by V. P.
Gupta
(Elsevier
, 2018
), pp. 317
–340
.44.
D. F.
Dinu
, M.
Podewitz
, H.
Grothe
, T.
Loerting
, and K. R.
Liedl
, “On the synergy of matrix-isolation infrared spectroscopy and vibrational configuration interaction computations
,” Theor. Chem. Acc.
139
(12
), 174
(2020
).45.
Y.
Grenie
, J.
Lassegues
, and C.
Garrigou‐Lagrange
, “Infrared spectrum of matrix‐isolated glycine
,” J. Chem. Phys.
53
(7
), 2980
–2982
(1970
).46.
Y.
Grenie
and C.
Garrigou-Lagrange
, “Infrared spectra of glycine isotopic species isolated in an argon or nitrogen matrix
,” J. Mol. Spectrosc.
41
(2
), 240
–248
(1972
).47.
F.
Huisken
, O.
Werhahn
, A. Yu.
Ivanov
, and S. A.
Krasnokutski
, “The O–H stretching vibrations of glycine trapped in rare gas matrices and helium clusters
,” J. Chem. Phys.
111
(7
), 2978
–2984
(1999
).48.
B.
Lambie
, R.
Ramaekers
, and G.
Maes
, “On the contribution of intramolecular H-bonding entropy to the conformational stability of alanine conformations
,” Spectrochim. Acta, Part A
59
(6
), 1387
–1397
(2003
).49.
B.
Lambie
, R.
Ramaekers
, and G.
Maes
, “Conformational behavior of serine: An experimental matrix-isolation FT-IR and theoretical DFT(B3LYP)/6-31++G** study
,” J. Phys. Chem. A
108
(47
), 10426
–10433
(2004
).50.
R.
Ramaekers
, J.
Pajak
, B.
Lambie
, and G.
Maes
, “Neutral and zwitterionic glycine.H2O complexes: A theoretical and matrix-isolation Fourier transform infrared study
,” J. Chem. Phys.
120
(9
), 4182
–4193
(2004
).51.
R.
Ramaekers
, J.
Pajak
, M.
Rospenk
, and G.
Maes
, “Matrix-isolation FT-IR spectroscopic study and theoretical DFT(B3LYP)/6–31++G** calculations of the vibrational and conformational properties of tyrosine
,” Spectrochim. Acta, Part A
61
(7
), 1347
–1356
(2005
).52.
S.
Jarmelo
, L.
Lapinski
, M. J.
Nowak
, P. R.
Carey
, and R.
Fausto
, “Preferred conformers and photochemical (λ > 200 nm) reactivity of serine and 3,3-dideutero-serine in the neutral form
,” J. Phys. Chem. A
109
(25
), 5689
–5707
(2005
).53.
A.
Kaczor
, I. D.
Reva
, L. M.
Proniewicz
, and R.
Fausto
, “Importance of entropy in the conformational equilibrium of phenylalanine: A matrix-isolation infrared spectroscopy and density functional theory study
,” J. Phys. Chem. A
110
(7
), 2360
–2370
(2006
).54.
J. C.
Dobrowolski
, M. H.
Jamróz
, R.
Kołos
, J. E.
Rode
, and J.
Sadlej
, “Theoretical prediction and the first IR matrix observation of several L-cysteine molecule conformers
,” ChemPhysChem
8
(7
), 1085
–1094
(2007
).55.
C.
Espinoza
, J.
Szczepanski
, M.
Vala
, and N. C.
Polfer
, “Glycine and its hydrated complexes: A matrix isolation infrared study
,” J. Phys. Chem. A
114
(18
), 5919
–5927
(2010
).56.
G.
Bazsó
, G.
Magyarfalvi
, and G.
Tarczay
, “Tunneling lifetime of the ttc/VIp conformer of glycine in low-temperature matrices
,” J. Phys. Chem. A
116
(43
), 10539
–10547
(2012
).57.
B.
Boeckx
, W.
Nelissen
, and G.
Maes
, “Potential energy surface and matrix isolation FT-IR study of isoleucine
,” J. Phys. Chem. A
116
(12
), 3247
–3258
(2012
).58.
B.
Boeckx
and G.
Maes
, “The conformational behavior and H-bond structure of asparagine: A theoretical and experimental matrix-isolation FT-IR study
,” Biophys. Chem.
165–166
, 62
–73
(2012
).59.
E. E.
Najbauer
, G.
Bazsó
, R.
Apóstolo
, R.
Fausto
, M.
Biczysko
, V.
Barone
, and G.
Tarczay
, “Identification of serine conformers by matrix-isolation IR spectroscopy aided by near-infrared laser-induced conformational change, 2D correlation analysis, and quantum mechanical anharmonic computations
,” J. Phys. Chem. B
119
(33
), 10496
–10510
(2015
).60.
I. D.
Reva
, S. G.
Stepanian
, A. M.
Plokhotnichenko
, E. D.
Radchenko
, G. G.
Sheina
, and Y. P.
Blagoi
, “Infrared matrix isolation studies of amino acids. Molecular structure of proline
,” J. Mol. Struct.
318
, 1
–13
(1994
).61.
R.
Conte
, L.
Parma
, C.
Aieta
, A.
Rognoni
, and M.
Ceotto
, “Improved semiclassical dynamics through adiabatic switching trajectory sampling
,” J. Chem. Phys.
151
(21
), 214107
(2019
).62.
G.
Botti
, M.
Ceotto
, and R.
Conte
, “On-the-fly adiabatically switched semiclassical initial value representation molecular dynamics for vibrational spectroscopy of biomolecules
,” J. Chem. Phys.
155
(23
), 234102
(2021
).63.
R.
Conte
and M.
Ceotto
, “Semiclassical molecular dynamics for spectroscopic calculations
,” in Quantum Chemistry and Dynamics of Excited States
(John Wiley & Sons, Ltd.
, 2020
), pp. 595
–628
.64.
X.
Xu
and Y.
Yang
, “Full-quantum descriptions of molecular systems from constrained nuclear–electronic orbital density functional theory
,” J. Chem. Phys.
153
(7
), 074106
(2020
).65.
X.
Xu
and Y.
Yang
, “Constrained nuclear-electronic orbital density functional theory: Energy surfaces with nuclear quantum effects
,” J. Chem. Phys.
152
(8
), 084107
(2020
).66.
X.
Xu
and Y.
Yang
, “Molecular vibrational frequencies from analytic hessian of constrained nuclear–electronic orbital density functional theory
,” J. Chem. Phys.
154
(24
), 244110
(2021
).67.
Z.
Chen
and Y.
Yang
, “Incorporating nuclear quantum effects in molecular dynamics with a constrained minimized energy surface
,” J. Phys. Chem. Lett.
14
(1
), 279
–286
(2023
).68.
Y.
Wang
, Z.
Chen
, and Y.
Yang
, “Calculating vibrational excited state absorptions with excited state constrained minimized energy surfaces
,” J. Phys. Chem. A
127
(25
), 5491
–5501
(2023
).69.
X.
Xu
, Z.
Chen
, and Y.
Yang
, “Molecular dynamics with constrained nuclear electronic orbital density functional theory: Accurate vibrational spectra from efficient incorporation of nuclear quantum effects
,” J. Am. Chem. Soc.
144
(9
), 4039
–4046
(2022
).70.
Y.
Zhang
, X.
Xu
, N.
Yang
, Z.
Chen
, and Y.
Yang
, “Describing proton transfer modes in shared proton systems with constrained nuclear–electronic orbital methods
,” J. Chem. Phys.
158
(23
), 231101
(2023
).71.
Y.
Zhang
, Y.
Wang
, X.
Xu
, Z.
Chen
, and Y.
Yang
, “Vibrational spectra of highly anharmonic water clusters: Molecular dynamics and harmonic analysis revisited with constrained nuclear-electronic orbital methods
,” J. Chem. Theory Comput.
19
(24
), 9358
–9368
(2023
).72.
X.
Zhao
, Z.
Chen
, and Y.
Yang
, “Constrained nuclear-electronic orbital QM/MM approach for simulating complex systems with quantum nuclear delocalization effects incorporated
,” Chem. Phys. Rev.
(to be published).73.
X.
Xu
, “Constrained nuclear-electronic orbital density functional theory with a dielectric continuum solvent model
,” J. Phys. Chem. A
127
(30
), 6329
–6334
(2023
).74.
A. D.
Becke
, “Density-functional exchange-energy approximation with correct asymptotic behavior
,” Phys. Rev. A
38
(6
), 3098
–3100
(1988
).75.
A. D.
Becke
, “Density‐functional thermochemistry. III. The role of exact exchange
,” J. Chem. Phys.
98
(7
), 5648
–5652
(1993
).76.
C.
Lee
, W.
Yang
, and R. G.
Parr
, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,” Phys. Rev. B
37
(2
), 785
–789
(1988
).77.
V.
Barone
, “Anharmonic vibrational properties by a fully automated second-order perturbative approach
,” J. Chem. Phys.
122
(1
), 014108
(2005
).78.
P. R.
Franke
, J. F.
Stanton
, and G. E.
Douberly
, “How to VPT2: Accurate and intuitive simulations of CH stretching infrared spectra using VPT2+K with large effective Hamiltonian resonance treatments
,” J. Phys. Chem. A
125
(6
), 1301
–1324
(2021
).79.
A. D.
Boese
, “Density functional theory and hydrogen bonds: Are we there yet?
,” ChemPhysChem
16
(5
), 978
–985
(2015
).80.
S.
Grimme
, J.
Antony
, S.
Ehrlich
, and H.
Krieg
, “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,” J. Chem. Phys.
132
(15
), 154104
(2010
).81.
S.
Grimme
, S.
Ehrlich
, and L.
Goerigk
, “Effect of the damping function in dispersion corrected density functional theory
,” J. Comput. Chem.
32
(7
), 1456
–1465
(2011
).82.
L. C.
Dzugan
, R. J.
DiRisio
, L. R.
Madison
, and A. B.
McCoy
, “Spectral signatures of proton delocalization in H+(H2O)n=1−4 ions
,” Faraday Discuss.
212
, 443
–466
(2018
).83.
T. F.
Miller
III, D. C.
Clary
, and A. J. H. M.
Meijer
, “Collision-induced conformational changes in glycine
,” J. Chem. Phys.
122
(24
), 244323
(2005
).84.
F.
Huisken
, M.
Kaloudis
, and A. A.
Vigasin
, “Vibrational frequency shifts caused by weak intermolecular interactions
,” Chem. Phys. Lett.
269
, 235
–243
(1997
).85.
O.
Bludský
, J.
Chocholoušová
, J.
Vacek
, F.
Huisken
, and P.
Hobza
, “Anharmonic treatment of the lowest-energy conformers of glycine: A theoretical study
,” J. Chem. Phys.
113
(11
), 4629
–4635
(2000
).86.
N.
Heine
, M. R.
Fagiani
, M.
Rossi
, T.
Wende
, G.
Berden
, V.
Blum
, and K. R.
Asmis
, “Isomer-selective detection of hydrogen-bond vibrations in the protonated water hexamer
,” J. Am. Chem. Soc.
135
(22
), 8266
–8273
(2013
).87.
N.
Yang
, C. H.
Duong
, P. J.
Kelleher
, M. A.
Johnson
, and A. B.
McCoy
, “Isolation of site-specific anharmonicities of individual water molecules in the I−·(H2O)2 complex using tag-free, isotopomer selective IR-IR double resonance
,” Chem. Phys. Lett.
690
, 159
–171
(2017
).88.
I.
Shavitt
and R. J.
Bartlett
, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
(Cambridge University Press
, 2009
).89.
J. P.
Perdew
, K.
Burke
, and M.
Ernzerhof
, “Generalized gradient approximation made simple
,” Phys. Rev. Lett.
77
(18
), 3865
–3868
(1996
).90.
J. P.
Perdew
, M.
Ernzerhof
, and K.
Burke
, “Rationale for mixing exact exchange with density functional approximations
,” J. Chem. Phys.
105
(22
), 9982
–9985
(1996
).91.
C.
Adamo
and V.
Barone
, “Toward reliable density functional methods without adjustable parameters: The PBE0 model
,” J. Chem. Phys.
110
(13
), 6158
–6170
(1999
).92.
Y.
Zhao
and D. G.
Truhlar
, “The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals
,” Theor. Chem. Acc.
120
(1–3
), 215
–241
(2008
).93.
Center for High Throughput Computing
, “Center for high throughput computing
,” 2006
; https://doi.org/10.21231/GNT1-HW21.© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.