The assignment of the hydrogen bonded O–H stretch vibration in the proline matrix IR spectrum has sparked controversy. Employing constrained nuclear electronic orbital methods, we provide a clear assignment that the vibrational frequency drops to near 3000 cm−1 as a result of the interplay between electronic effects, nuclear quantum effects, and matrix effects.

1.
G. J.
Narlikar
and
D.
Herschlag
, “
Mechanistic aspects of enzymatic catalysis: Lessons from comparison of RNA and protein enzymes
,”
Annu. Rev. Biochem.
66
(
1
),
19
59
(
1997
).
2.
T. C.
Bruice
and
S. J.
Benkovic
, “
Chemical basis for enzyme catalysis
,”
Biochemistry
39
(
21
),
6267
6274
(
2000
).
3.
S. J.
Benkovic
and
S.
Hammes-Schiffer
, “
A perspective on enzyme catalysis
,”
Science
301
(
5637
),
1196
1202
(
2003
).
4.
R. E.
Hubbard
and
M.
Kamran Haider
, “
Hydrogen bonds in proteins: Role and strength
,” in
eLS
(
John Wiley & Sons, Ltd.
,
2010
).
5.
D.
Herschlag
and
M. M.
Pinney
, “
Hydrogen bonds: Simple after all?
,”
Biochemistry
57
(
24
),
3338
3352
(
2018
).
6.
J.-K.
Hwang
and
A.
Warshel
, “
How important are quantum mechanical nuclear motions in enzyme catalysis?
,”
J. Am. Chem. Soc.
118
(
47
),
11745
11751
(
1996
).
7.
J.
Pu
,
J.
Gao
, and
D. G.
Truhlar
, “
Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions
,”
Chem. Rev.
106
(
8
),
3140
3169
(
2006
).
8.
L.
Wang
,
S. D.
Fried
,
S. G.
Boxer
, and
T. E.
Markland
, “
Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site
,”
Proc. Natl. Acad. Sci. U. S. A.
111
(
52
),
18454
18459
(
2014
).
9.
A.
Vardi-Kilshtain
,
N.
Nitoker
, and
D. T.
Major
, “
Nuclear quantum effects and kinetic isotope effects in enzyme reactions
,”
Arch. Biochem. Biophys.
582
,
18
27
(
2015
).
10.
T. E.
Markland
and
M.
Ceriotti
, “
Nuclear quantum effects enter the mainstream
,”
Nat. Rev. Chem.
2
(
3
),
0109
(
2018
).
11.
V.
Madison
, “
Flexibility of the pyrrolidine ring in proline peptides
,”
Biopolymers
16
(
12
),
2671
2692
(
1977
).
12.
A. A.
Morgan
and
E.
Rubenstein
, “
Proline: The distribution, frequency, positioning, and common functional roles of proline and polyproline sequences in the human proteome
,”
PLoS One
8
(
1
),
e53785
(
2013
).
13.
S. G.
Stepanian
,
I. D.
Reva
,
E. D.
Radchenko
, and
L.
Adamowicz
, “
Conformers of nonionized proline. Matrix-isolation infrared and post-Hartree–Fock ab initio study
,”
J. Phys. Chem. A
105
(
47
),
10664
10672
(
2001
).
14.
L.
Piela
,
G.
Némethy
, and
H. A.
Scheraga
, “
Proline-induced constraints in α-helices
,”
Biopolymers
26
(
9
),
1587
1600
(
1987
).
15.
R.
Sankararamakrishnan
and
S.
Vishveshwara
, “
Conformational studies on peptides with proline in the right-handed α-helical region
,”
Biopolymers
30
(
3–4
),
287
298
(
1990
).
16.
S. C.
Li
,
N. K.
Goto
,
K. A.
Williams
, and
C. M.
Deber
, “
Alpha-helical, but not beta-sheet, propensity of proline is determined by peptide environment
,”
Proc. Natl. Acad. Sci. U. S. A.
93
(
13
),
6676
6681
(
1996
).
17.
C. M.
Deber
and
A. G.
Therien
, “
Putting the β-breaks on membrane protein misfolding
,”
Nat. Struct. Biol.
9
(
5
),
318
319
(
2002
).
18.
A. A.
Adzhubei
and
M. J. E.
Sternberg
, “
Left-handed polyproline II helices commonly occur in globular proteins
,”
J. Mol. Biol.
229
(
2
),
472
493
(
1993
).
19.
A. A.
Adzhubei
,
M. J. E.
Sternberg
, and
A. A.
Makarov
, “
Polyproline-II helix in proteins: Structure and function
,”
J. Mol. Biol.
425
(
12
),
2100
2132
(
2013
).
20.
S.
Bahmanyar
and
K. N.
Houk
, “
Origins of opposite absolute stereoselectivities in proline-catalyzed direct mannich and aldol reactions
,”
Org. Lett.
5
(
8
),
1249
1251
(
2003
).
21.
S. K.
Panday
, “
Advances in the chemistry of proline and its derivatives: An excellent amino acid with versatile applications in asymmetric synthesis
,”
Tetrahedron: Asymmetry
22
(
20–22
),
1817
1847
(
2011
).
22.
R. B.
Sunoj
, “
Proline-derived organocatalysis and synergism between theory and experiments
,”
WIREs Comput. Mol. Sci.
1
(
6
),
920
931
(
2011
).
23.
R. D.
Suenram
and
F. J.
Lovas
, “
Millimeter wave spectrum of glycine. A new conformer
,”
J. Am. Chem. Soc.
102
(
24
),
7180
7184
(
1980
).
24.
C. H.
Hu
,
M.
Shen
, and
H. F. I.
Schaefer
, “
Glycine conformational analysis
,”
J. Am. Chem. Soc.
115
(
7
),
2923
2929
(
1993
).
25.
A. Y.
Ivanov
,
G.
Sheina
, and
Y. P.
Blagoi
, “
FTIR spectroscopic study of the UV-induced rotamerization of glycine in the low temperature matrices (Kr, Ar, Ne)
,”
Spectrochim. Acta, Part A
55
(
1
),
219
228
(
1998
).
26.
S. G.
Stepanian
,
I. D.
Reva
,
E. D.
Radchenko
,
M. T. S.
Rosado
,
M. L. T. S.
Duarte
,
R.
Fausto
, and
L.
Adamowicz
, “
Matrix-isolation infrared and theoretical studies of the glycine conformers
,”
J. Phys. Chem. A
102
(
6
),
1041
1054
(
1998
).
27.
S. G.
Stepanian
,
I. D.
Reva
,
E. D.
Radchenko
, and
L.
Adamowicz
, “
Conformational behavior of α-alanine. Matrix-isolation infrared and theoretical DFT and ab initio study
,”
J. Phys. Chem. A
102
(
24
),
4623
4629
(
1998
).
28.
S. G.
Stepanian
,
I. D.
Reva
,
E. D.
Radchenko
, and
L.
Adamowicz
, “
Combined matrix-isolation infrared and theoretical DFT and ab initio study of the nonionized valine conformers
,”
J. Phys. Chem. A
103
(
22
),
4404
4412
(
1999
).
29.
G.
Bazsó
,
E. E.
Najbauer
,
G.
Magyarfalvi
, and
G.
Tarczay
, “
Near-infrared laser induced conformational change of alanine in low-temperature matrixes and the tunneling lifetime of its conformer VI
,”
J. Phys. Chem. A
117
(
9
),
1952
1962
(
2013
).
30.
S. G.
Stepanian
,
A. Y.
Ivanov
, and
L.
Adamowicz
, “
Conformational composition of neutral leucine. Matrix isolation infrared and ab initio study
,”
Chem. Phys.
423
,
20
29
(
2013
).
31.
M.
Ramek
,
A.-M.
Kelterer
, and
S.
Nikolić
, “
Ab initio and molecular mechanics conformational analysis of neutral L-proline
,”
Int. J. Quantum Chem.
65
(
6
),
1033
1045
(
1997
).
32.
A. G.
Császár
and
A.
Perczel
, “
Ab initio characterization of building units in peptides and proteins
,”
Prog. Biophys. Mol. Biol.
71
(
2
),
243
309
(
1999
).
33.
A.
Lesarri
,
S.
Mata
,
E. J.
Cocinero
,
S.
Blanco
,
J. C.
López
, and
J. L.
Alonso
, “
The Structure of neutral proline
,”
Angew. Chem., Int. Ed.
41
(
24
),
4673
4676
(
2002
).
34.
E.
Czinki
and
A. G.
Császár
, “
Conformers of gaseous proline
,”
Chem. - Eur. J.
9
(
4
),
1008
1019
(
2003
).
35.
W. D.
Allen
,
E.
Czinki
, and
A. G.
Császár
, “
Molecular structure of proline
,”
Chem. - Eur. J.
10
(
18
),
4512
4517
(
2004
).
36.
S.
Mata
,
V.
Vaquero
,
C.
Cabezas
,
I.
Peña
,
C.
Pérez
,
J. C.
López
, and
J. L.
Alonso
, “
Observation of two new conformers of neutral proline
,”
Phys. Chem. Chem. Phys.
11
(
21
),
4141
4144
(
2009
).
37.
F.
Fathi
and
H.
Farrokhpour
, “
Valence ionization of L-proline amino acid: Experimental and theoretical study
,”
Chem. Phys. Lett.
565
,
102
107
(
2013
).
38.
R.
Hadidi
,
L.
Nahon
,
D. K.
Božanić
,
H.
Ganjitabar
,
G. A.
Garcia
, and
I.
Powis
, “
Conformer-dependent vacuum ultraviolet photodynamics and chiral asymmetries in pure enantiomers of gas phase proline
,”
Commun. Chem.
4
(
1
),
72
(
2021
).
39.
G.
Botti
,
C.
Aieta
, and
R.
Conte
, “
The complex vibrational spectrum of proline explained through the adiabatically switched semiclassical initial value representation
,”
J. Chem. Phys.
156
(
16
),
164303
(
2022
).
40.
Y.
Yang
and
Z.
Lin
, “
Extensive exploration of the conformational landscapes of neutral and terminally blocked prolines in the gas phase: A density functional theory study
,”
J. Chem. Res.
46
(
4
),
174751982211104
(
2022
).
41.
R.
Linder
,
M.
Nispel
,
T.
Häber
, and
K.
Kleinermanns
, “
Gas-phase FT-IR-spectra of natural amino acids
,”
Chem. Phys. Lett.
409
(
4-6
),
260
264
(
2005
).
42.
T.
Bally
, “
Matrix isolation
,” in
Reactive Intermediate Chemistry
, edited by
R. A.
Moss
,
M. S.
Platz
, and
M.
Jones
, Jr.
(
John Wiley & Sons, Ltd.
,
2003
), pp.
795
845
.
43.
P.
Dubey
,
J.
Saini
,
K.
Verma
,
G.
Karir
,
A.
Mukhopadhyay
, and
K. S.
Viswanathan
, “
Chapter 14 - Matrix isolation spectroscopy—A window to molecular processes
,” in
Molecular and Laser Spectroscopy
, edited by
V. P.
Gupta
(
Elsevier
,
2018
), pp.
317
340
.
44.
D. F.
Dinu
,
M.
Podewitz
,
H.
Grothe
,
T.
Loerting
, and
K. R.
Liedl
, “
On the synergy of matrix-isolation infrared spectroscopy and vibrational configuration interaction computations
,”
Theor. Chem. Acc.
139
(
12
),
174
(
2020
).
45.
Y.
Grenie
,
J.
Lassegues
, and
C.
Garrigou‐Lagrange
, “
Infrared spectrum of matrix‐isolated glycine
,”
J. Chem. Phys.
53
(
7
),
2980
2982
(
1970
).
46.
Y.
Grenie
and
C.
Garrigou-Lagrange
, “
Infrared spectra of glycine isotopic species isolated in an argon or nitrogen matrix
,”
J. Mol. Spectrosc.
41
(
2
),
240
248
(
1972
).
47.
F.
Huisken
,
O.
Werhahn
,
A. Yu.
Ivanov
, and
S. A.
Krasnokutski
, “
The O–H stretching vibrations of glycine trapped in rare gas matrices and helium clusters
,”
J. Chem. Phys.
111
(
7
),
2978
2984
(
1999
).
48.
B.
Lambie
,
R.
Ramaekers
, and
G.
Maes
, “
On the contribution of intramolecular H-bonding entropy to the conformational stability of alanine conformations
,”
Spectrochim. Acta, Part A
59
(
6
),
1387
1397
(
2003
).
49.
B.
Lambie
,
R.
Ramaekers
, and
G.
Maes
, “
Conformational behavior of serine: An experimental matrix-isolation FT-IR and theoretical DFT(B3LYP)/6-31++G** study
,”
J. Phys. Chem. A
108
(
47
),
10426
10433
(
2004
).
50.
R.
Ramaekers
,
J.
Pajak
,
B.
Lambie
, and
G.
Maes
, “
Neutral and zwitterionic glycine.H2O complexes: A theoretical and matrix-isolation Fourier transform infrared study
,”
J. Chem. Phys.
120
(
9
),
4182
4193
(
2004
).
51.
R.
Ramaekers
,
J.
Pajak
,
M.
Rospenk
, and
G.
Maes
, “
Matrix-isolation FT-IR spectroscopic study and theoretical DFT(B3LYP)/6–31++G** calculations of the vibrational and conformational properties of tyrosine
,”
Spectrochim. Acta, Part A
61
(
7
),
1347
1356
(
2005
).
52.
S.
Jarmelo
,
L.
Lapinski
,
M. J.
Nowak
,
P. R.
Carey
, and
R.
Fausto
, “
Preferred conformers and photochemical (λ > 200 nm) reactivity of serine and 3,3-dideutero-serine in the neutral form
,”
J. Phys. Chem. A
109
(
25
),
5689
5707
(
2005
).
53.
A.
Kaczor
,
I. D.
Reva
,
L. M.
Proniewicz
, and
R.
Fausto
, “
Importance of entropy in the conformational equilibrium of phenylalanine: A matrix-isolation infrared spectroscopy and density functional theory study
,”
J. Phys. Chem. A
110
(
7
),
2360
2370
(
2006
).
54.
J. C.
Dobrowolski
,
M. H.
Jamróz
,
R.
Kołos
,
J. E.
Rode
, and
J.
Sadlej
, “
Theoretical prediction and the first IR matrix observation of several L-cysteine molecule conformers
,”
ChemPhysChem
8
(
7
),
1085
1094
(
2007
).
55.
C.
Espinoza
,
J.
Szczepanski
,
M.
Vala
, and
N. C.
Polfer
, “
Glycine and its hydrated complexes: A matrix isolation infrared study
,”
J. Phys. Chem. A
114
(
18
),
5919
5927
(
2010
).
56.
G.
Bazsó
,
G.
Magyarfalvi
, and
G.
Tarczay
, “
Tunneling lifetime of the ttc/VIp conformer of glycine in low-temperature matrices
,”
J. Phys. Chem. A
116
(
43
),
10539
10547
(
2012
).
57.
B.
Boeckx
,
W.
Nelissen
, and
G.
Maes
, “
Potential energy surface and matrix isolation FT-IR study of isoleucine
,”
J. Phys. Chem. A
116
(
12
),
3247
3258
(
2012
).
58.
B.
Boeckx
and
G.
Maes
, “
The conformational behavior and H-bond structure of asparagine: A theoretical and experimental matrix-isolation FT-IR study
,”
Biophys. Chem.
165–166
,
62
73
(
2012
).
59.
E. E.
Najbauer
,
G.
Bazsó
,
R.
Apóstolo
,
R.
Fausto
,
M.
Biczysko
,
V.
Barone
, and
G.
Tarczay
, “
Identification of serine conformers by matrix-isolation IR spectroscopy aided by near-infrared laser-induced conformational change, 2D correlation analysis, and quantum mechanical anharmonic computations
,”
J. Phys. Chem. B
119
(
33
),
10496
10510
(
2015
).
60.
I. D.
Reva
,
S. G.
Stepanian
,
A. M.
Plokhotnichenko
,
E. D.
Radchenko
,
G. G.
Sheina
, and
Y. P.
Blagoi
, “
Infrared matrix isolation studies of amino acids. Molecular structure of proline
,”
J. Mol. Struct.
318
,
1
13
(
1994
).
61.
R.
Conte
,
L.
Parma
,
C.
Aieta
,
A.
Rognoni
, and
M.
Ceotto
, “
Improved semiclassical dynamics through adiabatic switching trajectory sampling
,”
J. Chem. Phys.
151
(
21
),
214107
(
2019
).
62.
G.
Botti
,
M.
Ceotto
, and
R.
Conte
, “
On-the-fly adiabatically switched semiclassical initial value representation molecular dynamics for vibrational spectroscopy of biomolecules
,”
J. Chem. Phys.
155
(
23
),
234102
(
2021
).
63.
R.
Conte
and
M.
Ceotto
, “
Semiclassical molecular dynamics for spectroscopic calculations
,” in
Quantum Chemistry and Dynamics of Excited States
(
John Wiley & Sons, Ltd.
,
2020
), pp.
595
628
.
64.
X.
Xu
and
Y.
Yang
, “
Full-quantum descriptions of molecular systems from constrained nuclear–electronic orbital density functional theory
,”
J. Chem. Phys.
153
(
7
),
074106
(
2020
).
65.
X.
Xu
and
Y.
Yang
, “
Constrained nuclear-electronic orbital density functional theory: Energy surfaces with nuclear quantum effects
,”
J. Chem. Phys.
152
(
8
),
084107
(
2020
).
66.
X.
Xu
and
Y.
Yang
, “
Molecular vibrational frequencies from analytic hessian of constrained nuclear–electronic orbital density functional theory
,”
J. Chem. Phys.
154
(
24
),
244110
(
2021
).
67.
Z.
Chen
and
Y.
Yang
, “
Incorporating nuclear quantum effects in molecular dynamics with a constrained minimized energy surface
,”
J. Phys. Chem. Lett.
14
(
1
),
279
286
(
2023
).
68.
Y.
Wang
,
Z.
Chen
, and
Y.
Yang
, “
Calculating vibrational excited state absorptions with excited state constrained minimized energy surfaces
,”
J. Phys. Chem. A
127
(
25
),
5491
5501
(
2023
).
69.
X.
Xu
,
Z.
Chen
, and
Y.
Yang
, “
Molecular dynamics with constrained nuclear electronic orbital density functional theory: Accurate vibrational spectra from efficient incorporation of nuclear quantum effects
,”
J. Am. Chem. Soc.
144
(
9
),
4039
4046
(
2022
).
70.
Y.
Zhang
,
X.
Xu
,
N.
Yang
,
Z.
Chen
, and
Y.
Yang
, “
Describing proton transfer modes in shared proton systems with constrained nuclear–electronic orbital methods
,”
J. Chem. Phys.
158
(
23
),
231101
(
2023
).
71.
Y.
Zhang
,
Y.
Wang
,
X.
Xu
,
Z.
Chen
, and
Y.
Yang
, “
Vibrational spectra of highly anharmonic water clusters: Molecular dynamics and harmonic analysis revisited with constrained nuclear-electronic orbital methods
,”
J. Chem. Theory Comput.
19
(
24
),
9358
9368
(
2023
).
72.
X.
Zhao
,
Z.
Chen
, and
Y.
Yang
, “
Constrained nuclear-electronic orbital QM/MM approach for simulating complex systems with quantum nuclear delocalization effects incorporated
,”
Chem. Phys. Rev.
(to be published).
73.
X.
Xu
, “
Constrained nuclear-electronic orbital density functional theory with a dielectric continuum solvent model
,”
J. Phys. Chem. A
127
(
30
),
6329
6334
(
2023
).
74.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
(
6
),
3098
3100
(
1988
).
75.
A. D.
Becke
, “
Density‐functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
(
7
),
5648
5652
(
1993
).
76.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
(
2
),
785
789
(
1988
).
77.
V.
Barone
, “
Anharmonic vibrational properties by a fully automated second-order perturbative approach
,”
J. Chem. Phys.
122
(
1
),
014108
(
2005
).
78.
P. R.
Franke
,
J. F.
Stanton
, and
G. E.
Douberly
, “
How to VPT2: Accurate and intuitive simulations of CH stretching infrared spectra using VPT2+K with large effective Hamiltonian resonance treatments
,”
J. Phys. Chem. A
125
(
6
),
1301
1324
(
2021
).
79.
A. D.
Boese
, “
Density functional theory and hydrogen bonds: Are we there yet?
,”
ChemPhysChem
16
(
5
),
978
985
(
2015
).
80.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
(
15
),
154104
(
2010
).
81.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
(
7
),
1456
1465
(
2011
).
82.
L. C.
Dzugan
,
R. J.
DiRisio
,
L. R.
Madison
, and
A. B.
McCoy
, “
Spectral signatures of proton delocalization in H+(H2O)n=1−4 ions
,”
Faraday Discuss.
212
,
443
466
(
2018
).
83.
T. F.
Miller
III
,
D. C.
Clary
, and
A. J. H. M.
Meijer
, “
Collision-induced conformational changes in glycine
,”
J. Chem. Phys.
122
(
24
),
244323
(
2005
).
84.
F.
Huisken
,
M.
Kaloudis
, and
A. A.
Vigasin
, “
Vibrational frequency shifts caused by weak intermolecular interactions
,”
Chem. Phys. Lett.
269
,
235
243
(
1997
).
85.
O.
Bludský
,
J.
Chocholoušová
,
J.
Vacek
,
F.
Huisken
, and
P.
Hobza
, “
Anharmonic treatment of the lowest-energy conformers of glycine: A theoretical study
,”
J. Chem. Phys.
113
(
11
),
4629
4635
(
2000
).
86.
N.
Heine
,
M. R.
Fagiani
,
M.
Rossi
,
T.
Wende
,
G.
Berden
,
V.
Blum
, and
K. R.
Asmis
, “
Isomer-selective detection of hydrogen-bond vibrations in the protonated water hexamer
,”
J. Am. Chem. Soc.
135
(
22
),
8266
8273
(
2013
).
87.
N.
Yang
,
C. H.
Duong
,
P. J.
Kelleher
,
M. A.
Johnson
, and
A. B.
McCoy
, “
Isolation of site-specific anharmonicities of individual water molecules in the I·(H2O)2 complex using tag-free, isotopomer selective IR-IR double resonance
,”
Chem. Phys. Lett.
690
,
159
171
(
2017
).
88.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
(
Cambridge University Press
,
2009
).
89.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
90.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
, “
Rationale for mixing exact exchange with density functional approximations
,”
J. Chem. Phys.
105
(
22
),
9982
9985
(
1996
).
91.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
(
13
),
6158
6170
(
1999
).
92.
Y.
Zhao
and
D. G.
Truhlar
, “
The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals
,”
Theor. Chem. Acc.
120
(
1–3
),
215
241
(
2008
).
93.
Center for High Throughput Computing
, “
Center for high throughput computing
,”
2006
; https://doi.org/10.21231/GNT1-HW21.
You do not currently have access to this content.