We explore the possibility of implementing random walks in the manifold of Hartree–Fock–Bogoliubov wave functions. The goal is to extend state-of-the-art quantum Monte Carlo approaches, in particular the constrained-path auxiliary-field quantum Monte Carlo technique, to systems where finite pairing order parameters or complex pairing mechanisms, e.g., Fulde–Ferrell–Larkin–Ovchinnikov pairing or triplet pairing, may be expected. Leveraging the flexibility to define a vacuum state tailored to the physical problem, we discuss a method to use imaginary-time evolution of Hartree–Fock–Bogoliubov states to compute ground state correlations, extending beyond situations spanned by current formalisms. Illustrative examples are provided.
REFERENCES
1.
S.
Zhang
, J.
Carlson
, and J. E.
Gubernatis
, “Constrained path Monte Carlo method for fermion ground states
,” Phys. Rev. B
55
, 7464
–7477
(1997
).2.
C.-C.
Chang
and S.
Zhang
, “Spatially inhomogeneous phase in the two-dimensional repulsive Hubbard model
,” Phys. Rev. B
78
, 165101
(2008
).3.
H.
Xu
, C.-M.
Chung
, M.
Qin
, U.
Schollwöck
, S. R.
White
, and S.
Zhang
, “Coexistence of superconductivity with partially filled stripes in the Hubbard model
,” Science
384
, eadh7691
(2024
).4.
S.
Zhang
and H.
Krakauer
, “Quantum Monte Carlo method using phase-free random walks with slater determinants
,” Phys. Rev. Lett.
90
, 136401
(2003
).5.
M.
Motta
and S.
Zhang
, “Ab initio computations of molecular systems by the auxiliary-field quantum Monte Carlo method
,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
, e1364
(2018
).6.
M.
Motta
, C.
Genovese
, F.
Ma
, Z.-H.
Cui
, R.
Sawaya
, G. K.-L.
Chan
, N.
Chepiga
, P.
Helms
, C.
Jiménez-Hoyos
, A. J.
Millis
, U.
Ray
, E.
Ronca
, H.
Shi
, S.
Sorella
, E. M.
Stoudenmire
, S. R.
White
, and S.
Zhang
(Simons Collaboration on the Many-Electron Problem)
, “Ground-state properties of the hydrogen chain: Dimerization, insulator-to-metal transition, and magnetic phases
,” Phys. Rev. X
10
, 031058
(2020
).7.
H.
Shi
, S.
Chiesa
, and S.
Zhang
, “Ground-state properties of strongly interacting Fermi gases in two dimensions
,” Phys. Rev. A
92
, 033603
(2015
).8.
J. P. F.
LeBlanc
, A. E.
Antipov
, F.
Becca
, I. W.
Bulik
, G. K.-L.
Chan
, C.-M.
Chung
, Y.
Deng
, M.
Ferrero
, T. M.
Henderson
, C. A.
Jiménez-Hoyos
, E.
Kozik
, X.-W.
Liu
, A. J.
Millis
, N. V.
Prokof’ev
, M.
Qin
, G. E.
Scuseria
, H.
Shi
, B. V.
Svistunov
, L. F.
Tocchio
, I. S.
Tupitsyn
, S. R.
White
, S.
Zhang
, B.-X.
Zheng
, Z.
Zhu
, and E.
Gull
(Simons Collaboration on the Many-Electron Problem)
, “Solutions of the two-dimensional Hubbard model: Benchmarks and results from a wide range of numerical algorithms
,” Phys. Rev. X
5
, 041041
(2015
).9.
H.
Shi
, P.
Rosenberg
, S.
Chiesa
, and S.
Zhang
, “Rashba spin-orbit coupling, strong interactions, and the BCS-BEC crossover in the ground state of the two-dimensional Fermi gas
,” Phys. Rev. Lett.
117
, 040401
(2016
).10.
P.
Rosenberg
, H.
Shi
, and S.
Zhang
, “Ultracold atoms in a square lattice with spin-orbit coupling: Charge order, superfluidity, and topological signatures
,” Phys. Rev. Lett.
119
, 265301
(2017
).11.
E.
Vitali
, P.
Rosenberg
, and S.
Zhang
, “Exotic superfluid phases in spin-polarized Fermi gases in optical lattices
,” Phys. Rev. Lett.
128
, 203201
(2022
).12.
M.
Motta
, D. M.
Ceperley
, G. K.-L.
Chan
, J. A.
Gomez
, E.
Gull
, S.
Guo
, C. A.
Jiménez-Hoyos
, T. N.
Lan
, J.
Li
, F.
Ma
, A. J.
Millis
, N. V.
Prokof’ev
, U.
Ray
, G. E.
Scuseria
, S.
Sorella
, E. M.
Stoudenmire
, Q.
Sun
, I. S.
Tupitsyn
, S. R.
White
, D.
Zgid
, and S.
Zhang
(Simons Collaboration on the Many-Electron Problem)
, “Towards the solution of the many-electron problem in real materials: Equation of state of the hydrogen chain with state-of-the-art many-body methods
,” Phys. Rev. X
7
, 031059
(2017
).13.
M.
Suewattana
, W.
Purwanto
, S.
Zhang
, H.
Krakauer
, and E. J.
Walter
, “Phaseless auxiliary-field quantum Monte Carlo calculations with plane waves and pseudopotentials: Applications to atoms and molecules
,” Phys. Rev. B
75
, 245123
(2007
).14.
F.
Ma
, W.
Purwanto
, S.
Zhang
, and H.
Krakauer
, “Quantum Monte Carlo calculations in solids with downfolded Hamiltonians
,” Phys. Rev. Lett.
114
, 226401
(2015
).15.
M.
Qin
, C.-M.
Chung
, H.
Shi
, E.
Vitali
, C.
Hubig
, U.
Schollwöck
, S. R.
White
, and S.
Zhang
(Simons Collaboration on the Many-Electron Problem)
, “Absence of superconductivity in the pure two-dimensional Hubbard model
,” Phys. Rev. X
10
, 031016
(2020
).16.
E.
Vitali
, P.
Rosenberg
, and S.
Zhang
, “Calculating ground-state properties of correlated fermionic systems with BCS trial wave functions in Slater determinant path-integral approaches
,” Phys. Rev. A
100
, 023621
(2019
).17.
H.
Shi
and S.
Zhang
, “Many-body computations by stochastic sampling in Hartree-Fock-Bogoliubov space
,” Phys. Rev. B
95
, 045144
(2017
).18.
O.
Juillet
, A.
Leprévost
, J.
Bonnard
, and R.
Frésard
, “Phaseless quantum Monte-Carlo approach to strongly correlated superconductors with stochastic Hartree–Fock–Bogoliubov wavefunctions
,” J. Phys. A: Math. Theor.
50
, 175001
(2017
).19.
A. J.
Coleman
, “Structure of fermion density matrices. II. Antisymmetrized geminal powers
,” J. Math. Phys.
6
, 1425
–1431
(1965
).20.
P.
Ring
and P.
Schuck
, The Nuclear Many-Body Problem
(Springer-Verlag
, New York
, 1980
).21.
A.
Porro
and T.
Duguet
, “On the off-diagonal Wick’s theorem and Onishi formula
,” Eur. Phys. J. A
58
, 197
(2022
).22.
M.
Qin
, H.
Shi
, and S.
Zhang
, “Coupling quantum Monte Carlo and independent-particle calculations: Self-consistent constraint for the sign problem based on the density or the density matrix
,” Phys. Rev. B
94
, 235119
(2016
).23.
M.
Wimmer
, “Algorithm 923: Efficient numerical computation of the Pfaffian for dense and banded skew-symmetric matrices
,” ACM Trans. Math. Software
38
, 1
(2012
).24.
M.
Bajdich
, L.
Mitas
, L. K.
Wagner
, and K. E.
Schmidt
, “Pfaffian pairing and backflow wavefunctions for electronic structure quantum Monte Carlo methods
,” Phys. Rev. B
77
, 115112
(2008
).25.
D.
Tahara
and M.
Imada
, “Variational Monte Carlo method combined with quantum-number projection and multi-variable optimization
,” J. Phys. Soc. Jpn.
77
, 114701
(2008
).26.
M.
Motta
and S.
Zhang
, “Communication: Calculation of interatomic forces and optimization of molecular geometry with auxiliary-field quantum Monte Carlo
,” J. Chem. Phys.
148
, 181101
(2018
).27.
K.
Hara
and S.
Iwasaki
, “On the quantum number projection: (I). General theory
,” Nucl. Phys. A
332
, 61
–68
(1979
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.