We explore the possibility of implementing random walks in the manifold of Hartree–Fock–Bogoliubov wave functions. The goal is to extend state-of-the-art quantum Monte Carlo approaches, in particular the constrained-path auxiliary-field quantum Monte Carlo technique, to systems where finite pairing order parameters or complex pairing mechanisms, e.g., Fulde–Ferrell–Larkin–Ovchinnikov pairing or triplet pairing, may be expected. Leveraging the flexibility to define a vacuum state tailored to the physical problem, we discuss a method to use imaginary-time evolution of Hartree–Fock–Bogoliubov states to compute ground state correlations, extending beyond situations spanned by current formalisms. Illustrative examples are provided.

1.
S.
Zhang
,
J.
Carlson
, and
J. E.
Gubernatis
, “
Constrained path Monte Carlo method for fermion ground states
,”
Phys. Rev. B
55
,
7464
7477
(
1997
).
2.
C.-C.
Chang
and
S.
Zhang
, “
Spatially inhomogeneous phase in the two-dimensional repulsive Hubbard model
,”
Phys. Rev. B
78
,
165101
(
2008
).
3.
H.
Xu
,
C.-M.
Chung
,
M.
Qin
,
U.
Schollwöck
,
S. R.
White
, and
S.
Zhang
, “
Coexistence of superconductivity with partially filled stripes in the Hubbard model
,”
Science
384
,
eadh7691
(
2024
).
4.
S.
Zhang
and
H.
Krakauer
, “
Quantum Monte Carlo method using phase-free random walks with slater determinants
,”
Phys. Rev. Lett.
90
,
136401
(
2003
).
5.
M.
Motta
and
S.
Zhang
, “
Ab initio computations of molecular systems by the auxiliary-field quantum Monte Carlo method
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1364
(
2018
).
6.
M.
Motta
,
C.
Genovese
,
F.
Ma
,
Z.-H.
Cui
,
R.
Sawaya
,
G. K.-L.
Chan
,
N.
Chepiga
,
P.
Helms
,
C.
Jiménez-Hoyos
,
A. J.
Millis
,
U.
Ray
,
E.
Ronca
,
H.
Shi
,
S.
Sorella
,
E. M.
Stoudenmire
,
S. R.
White
, and
S.
Zhang
(Simons Collaboration on the Many-Electron Problem)
, “
Ground-state properties of the hydrogen chain: Dimerization, insulator-to-metal transition, and magnetic phases
,”
Phys. Rev. X
10
,
031058
(
2020
).
7.
H.
Shi
,
S.
Chiesa
, and
S.
Zhang
, “
Ground-state properties of strongly interacting Fermi gases in two dimensions
,”
Phys. Rev. A
92
,
033603
(
2015
).
8.
J. P. F.
LeBlanc
,
A. E.
Antipov
,
F.
Becca
,
I. W.
Bulik
,
G. K.-L.
Chan
,
C.-M.
Chung
,
Y.
Deng
,
M.
Ferrero
,
T. M.
Henderson
,
C. A.
Jiménez-Hoyos
,
E.
Kozik
,
X.-W.
Liu
,
A. J.
Millis
,
N. V.
Prokof’ev
,
M.
Qin
,
G. E.
Scuseria
,
H.
Shi
,
B. V.
Svistunov
,
L. F.
Tocchio
,
I. S.
Tupitsyn
,
S. R.
White
,
S.
Zhang
,
B.-X.
Zheng
,
Z.
Zhu
, and
E.
Gull
(Simons Collaboration on the Many-Electron Problem)
, “
Solutions of the two-dimensional Hubbard model: Benchmarks and results from a wide range of numerical algorithms
,”
Phys. Rev. X
5
,
041041
(
2015
).
9.
H.
Shi
,
P.
Rosenberg
,
S.
Chiesa
, and
S.
Zhang
, “
Rashba spin-orbit coupling, strong interactions, and the BCS-BEC crossover in the ground state of the two-dimensional Fermi gas
,”
Phys. Rev. Lett.
117
,
040401
(
2016
).
10.
P.
Rosenberg
,
H.
Shi
, and
S.
Zhang
, “
Ultracold atoms in a square lattice with spin-orbit coupling: Charge order, superfluidity, and topological signatures
,”
Phys. Rev. Lett.
119
,
265301
(
2017
).
11.
E.
Vitali
,
P.
Rosenberg
, and
S.
Zhang
, “
Exotic superfluid phases in spin-polarized Fermi gases in optical lattices
,”
Phys. Rev. Lett.
128
,
203201
(
2022
).
12.
M.
Motta
,
D. M.
Ceperley
,
G. K.-L.
Chan
,
J. A.
Gomez
,
E.
Gull
,
S.
Guo
,
C. A.
Jiménez-Hoyos
,
T. N.
Lan
,
J.
Li
,
F.
Ma
,
A. J.
Millis
,
N. V.
Prokof’ev
,
U.
Ray
,
G. E.
Scuseria
,
S.
Sorella
,
E. M.
Stoudenmire
,
Q.
Sun
,
I. S.
Tupitsyn
,
S. R.
White
,
D.
Zgid
, and
S.
Zhang
(Simons Collaboration on the Many-Electron Problem)
, “
Towards the solution of the many-electron problem in real materials: Equation of state of the hydrogen chain with state-of-the-art many-body methods
,”
Phys. Rev. X
7
,
031059
(
2017
).
13.
M.
Suewattana
,
W.
Purwanto
,
S.
Zhang
,
H.
Krakauer
, and
E. J.
Walter
, “
Phaseless auxiliary-field quantum Monte Carlo calculations with plane waves and pseudopotentials: Applications to atoms and molecules
,”
Phys. Rev. B
75
,
245123
(
2007
).
14.
F.
Ma
,
W.
Purwanto
,
S.
Zhang
, and
H.
Krakauer
, “
Quantum Monte Carlo calculations in solids with downfolded Hamiltonians
,”
Phys. Rev. Lett.
114
,
226401
(
2015
).
15.
M.
Qin
,
C.-M.
Chung
,
H.
Shi
,
E.
Vitali
,
C.
Hubig
,
U.
Schollwöck
,
S. R.
White
, and
S.
Zhang
(Simons Collaboration on the Many-Electron Problem)
, “
Absence of superconductivity in the pure two-dimensional Hubbard model
,”
Phys. Rev. X
10
,
031016
(
2020
).
16.
E.
Vitali
,
P.
Rosenberg
, and
S.
Zhang
, “
Calculating ground-state properties of correlated fermionic systems with BCS trial wave functions in Slater determinant path-integral approaches
,”
Phys. Rev. A
100
,
023621
(
2019
).
17.
H.
Shi
and
S.
Zhang
, “
Many-body computations by stochastic sampling in Hartree-Fock-Bogoliubov space
,”
Phys. Rev. B
95
,
045144
(
2017
).
18.
O.
Juillet
,
A.
Leprévost
,
J.
Bonnard
, and
R.
Frésard
, “
Phaseless quantum Monte-Carlo approach to strongly correlated superconductors with stochastic Hartree–Fock–Bogoliubov wavefunctions
,”
J. Phys. A: Math. Theor.
50
,
175001
(
2017
).
19.
A. J.
Coleman
, “
Structure of fermion density matrices. II. Antisymmetrized geminal powers
,”
J. Math. Phys.
6
,
1425
1431
(
1965
).
20.
P.
Ring
and
P.
Schuck
,
The Nuclear Many-Body Problem
(
Springer-Verlag
,
New York
,
1980
).
21.
A.
Porro
and
T.
Duguet
, “
On the off-diagonal Wick’s theorem and Onishi formula
,”
Eur. Phys. J. A
58
,
197
(
2022
).
22.
M.
Qin
,
H.
Shi
, and
S.
Zhang
, “
Coupling quantum Monte Carlo and independent-particle calculations: Self-consistent constraint for the sign problem based on the density or the density matrix
,”
Phys. Rev. B
94
,
235119
(
2016
).
23.
M.
Wimmer
, “
Algorithm 923: Efficient numerical computation of the Pfaffian for dense and banded skew-symmetric matrices
,”
ACM Trans. Math. Software
38
,
1
(
2012
).
24.
M.
Bajdich
,
L.
Mitas
,
L. K.
Wagner
, and
K. E.
Schmidt
, “
Pfaffian pairing and backflow wavefunctions for electronic structure quantum Monte Carlo methods
,”
Phys. Rev. B
77
,
115112
(
2008
).
25.
D.
Tahara
and
M.
Imada
, “
Variational Monte Carlo method combined with quantum-number projection and multi-variable optimization
,”
J. Phys. Soc. Jpn.
77
,
114701
(
2008
).
26.
M.
Motta
and
S.
Zhang
, “
Communication: Calculation of interatomic forces and optimization of molecular geometry with auxiliary-field quantum Monte Carlo
,”
J. Chem. Phys.
148
,
181101
(
2018
).
27.
K.
Hara
and
S.
Iwasaki
, “
On the quantum number projection: (I). General theory
,”
Nucl. Phys. A
332
,
61
68
(
1979
).
You do not currently have access to this content.