Finite size scaling for a first order phase transition, where a continuous symmetry is broken, is tested using an approximation of Gaussian probability distributions with a phenomenological “degeneracy” factor. Predictions are compared to the data from Monte Carlo simulations of the Lebwohl–Lasher model on L × L × L simple cubic lattices. The data show that the intersection of the fourth-order cumulant of the order parameter for different lattice sizes can be expressed in terms of the relative degeneracy q = 4π of the ordered and disordered phases. This result further supports the concept of universality at first order transitions developed recently.

1.
M. E.
Fisher
, in
Critical Phenomena
, edited by
M. S.
Green
(
Academic Press
,
London
,
1971
).
2.
V.
Privman
,
Finite Size Scaling and Numerical Simulation of Statistical Systems
(
World Scientific
,
Singapore
,
1990
).
4.
K.
Binder
and
D. P.
Landau
,
Phys. Rev. B
30
,
1477
(
1984
).
5.
M. S. S.
Challa
,
D. P.
Landau
, and
K.
Binder
,
Phys. Rev. B
34
,
1841
(
1986
).
6.
C.
Borgs
and
R.
Kotecky
,
J. Stat. Phys.
61
,
79
(
1990
).
7.
D. P.
Landau
and
K.
Binder
,
A Guide to Monte Carlo Simulations in Statistical Physics
, 5th ed. (
Cambridge University Press
,
Cambridge
,
2021
).
8.
J.
Xu
,
S.-H.
Tsai
,
D. P.
Landau
, and
K.
Binder
,
Phys. Rev. E
99
,
023309
(
2019
).
9.
P. A.
Lebwohl
and
G.
Lasher
,
Phys. Rev. A
6
,
426
(
1972
).
10.
U.
Farbri
and
C.
Zannoni
,
Mol. Phys.
58
,
763
(
1986
).
11.
C.
Zannoni
,
J. Chem. Phys.
84
,
424
(
1986
).
12.
Z.
Zhang
,
O. G.
Mouritsen
, and
M. J.
Zuckermann
,
Phys. Rev. Lett.
69
,
2803
(
1992
).
13.
S.
Boschi
,
M. P.
Brunelli
,
C.
Zannoni
,
C.
Chiccoli
, and
P.
Pasini
,
Int. J. Mod. Phys. C
8
,
547
(
1997
).
14.
N. V.
Priezjev
and
R. A.
Pelcovits
,
Phys. Rev. E
63
,
062702
(
2001
).
15.
D.
Jayasri
,
V. S. S.
Sastry
, and
K. P. N.
Murthy
,
Phys. Rev. E
72
,
036702
(
2005
).
16.
R.
Shekhar
,
J. K.
Whitmer
,
R.
Malshe
,
J. A.
Moreno-Razo
,
T. F.
Roberts
, and
J. J.
de Pablo
,
J. Chem. Phys.
136
,
234503
(
2012
).
17.
G.
Skačej
and
C.
Zannoni
,
Philos. Trans. R. Soc. A
379
,
20200117
(
2021
).
18.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
19.
B. A.
Berg
and
T.
Neuhaus
,
Phys. Rev. Lett.
68
,
9
(
1992
).
20.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
61
,
2635
(
1988
).
21.
J. A.
Plascak
,
J. Magn. Magn. Mater.
468
,
224
(
2018
).
23.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics
, 3rd ed. (
Elsevier
,
1980
).
24.
K.
Vollmayr
,
J. D.
Reger
,
M.
Scheucher
, and
K.
Binder
,
Z. Phys. B
91
,
113
(
1993
).
25.
K.
Binder
,
K.
Vollmayr
,
H.-P.
Deutsch
,
J. D.
Reger
,
M.
Scheucher
, and
D. P.
Landau
,
Int. J. Mod. Phys. C
3
,
1025
(
1992
).
27.
J.
Lee
and
J. M.
Kosterlitz
,
Phys. Rev. Lett.
65
,
137
(
1990
).
You do not currently have access to this content.