Finite size scaling for a first order phase transition, where a continuous symmetry is broken, is tested using an approximation of Gaussian probability distributions with a phenomenological “degeneracy” factor. Predictions are compared to the data from Monte Carlo simulations of the Lebwohl–Lasher model on L × L × L simple cubic lattices. The data show that the intersection of the fourth-order cumulant of the order parameter for different lattice sizes can be expressed in terms of the relative degeneracy q = 4π of the ordered and disordered phases. This result further supports the concept of universality at first order transitions developed recently.
REFERENCES
1.
M. E.
Fisher
, in Critical Phenomena
, edited by M. S.
Green
(Academic Press
, London
, 1971
).2.
V.
Privman
, Finite Size Scaling and Numerical Simulation of Statistical Systems
(World Scientific
, Singapore
, 1990
).3.
D. P.
Landau
, Phys. Rev. B
13
, 2997
(1976
).4.
K.
Binder
and D. P.
Landau
, Phys. Rev. B
30
, 1477
(1984
).5.
M. S. S.
Challa
, D. P.
Landau
, and K.
Binder
, Phys. Rev. B
34
, 1841
(1986
).6.
C.
Borgs
and R.
Kotecky
, J. Stat. Phys.
61
, 79
(1990
).7.
D. P.
Landau
and K.
Binder
, A Guide to Monte Carlo Simulations in Statistical Physics
, 5th ed. (Cambridge University Press
, Cambridge
, 2021
).8.
J.
Xu
, S.-H.
Tsai
, D. P.
Landau
, and K.
Binder
, Phys. Rev. E
99
, 023309
(2019
).9.
P. A.
Lebwohl
and G.
Lasher
, Phys. Rev. A
6
, 426
(1972
).10.
U.
Farbri
and C.
Zannoni
, Mol. Phys.
58
, 763
(1986
).11.
C.
Zannoni
, J. Chem. Phys.
84
, 424
(1986
).12.
Z.
Zhang
, O. G.
Mouritsen
, and M. J.
Zuckermann
, Phys. Rev. Lett.
69
, 2803
(1992
).13.
S.
Boschi
, M. P.
Brunelli
, C.
Zannoni
, C.
Chiccoli
, and P.
Pasini
, Int. J. Mod. Phys. C
8
, 547
(1997
).14.
N. V.
Priezjev
and R. A.
Pelcovits
, Phys. Rev. E
63
, 062702
(2001
).15.
D.
Jayasri
, V. S. S.
Sastry
, and K. P. N.
Murthy
, Phys. Rev. E
72
, 036702
(2005
).16.
R.
Shekhar
, J. K.
Whitmer
, R.
Malshe
, J. A.
Moreno-Razo
, T. F.
Roberts
, and J. J.
de Pablo
, J. Chem. Phys.
136
, 234503
(2012
).17.
G.
Skačej
and C.
Zannoni
, Philos. Trans. R. Soc. A
379
, 20200117
(2021
).18.
N.
Metropolis
, A. W.
Rosenbluth
, M. N.
Rosenbluth
, A. H.
Teller
, and E.
Teller
, J. Chem. Phys.
21
, 1087
(1953
).19.
B. A.
Berg
and T.
Neuhaus
, Phys. Rev. Lett.
68
, 9
(1992
).20.
A. M.
Ferrenberg
and R. H.
Swendsen
, Phys. Rev. Lett.
61
, 2635
(1988
).21.
J. A.
Plascak
, J. Magn. Magn. Mater.
468
, 224
(2018
).22.
F. Y.
Wu
, Rev. Mod. Phys.
54
, 235
(1982
).23.
24.
K.
Vollmayr
, J. D.
Reger
, M.
Scheucher
, and K.
Binder
, Z. Phys. B
91
, 113
(1993
).25.
K.
Binder
, K.
Vollmayr
, H.-P.
Deutsch
, J. D.
Reger
, M.
Scheucher
, and D. P.
Landau
, Int. J. Mod. Phys. C
3
, 1025
(1992
).26.
K.
Binder
, Phys. Rev. A
25
, 1699
(1982
).27.
J.
Lee
and J. M.
Kosterlitz
, Phys. Rev. Lett.
65
, 137
(1990
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.